Cho p,q là 2 số nguyên tố lớn hơn 3 và p=q+2.
CMR:p+q chia hết cho 12
Với p,q là số nguyên tố lớn hơn 5. CMR:p4 -q4 chia hết cho 240
cho các số nguyên tố p, q lớn hơn 3 sao p^2+q là số chính phương. CMR p^2+q chia hết cho 12
Cho p,q là các số nguyên tố lớn hơn 3 thoản mãn p – q = 2. Chứng minh p + q chia hết cho 12.
Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2. (\(k\in N\)*)
Nếu q=3k+1 thì p=q+2=3k+3. Khi đó p chia hết cho 3 nên không phải số nguyên tố (loại)
Nếu q=3k+2 thì p=q+2=3k+4. Khi đó p+q=6k+6=6(k+1)
Vì q=3k+2 là số nguyên tố nên k là số lẻ (nếu k chẵn thì q chia hết cho 2). Khi đó k có dạng 2m+1 (\(m\in N\)*)
Suy ra p+q=6(2m+1+1)=12(m+1) chia hết cho 12 (đpcm)
cho p,q lá 2 số nguyên tố lớn hơn 3 và p-q = 2. cmr: p+q chia hết cho 12
=>1 thừa số :12 dư 11 và 1thua so :12 dư 1
=>p+q chia het 12
Vì q nguyên tố, q > 3 nên q có dạng 6k + 1 hoặc 6k + 5 \(\left(k\inℕ\right)\)
+)Nếu \(q=6k+1\)thì \(p=q+2=6k+1+2=6k+3=3\left(2k+1\right)⋮3\)
Mà p > 3 nên p là hợp số (loại)
+)Nếu \(q=6k+5\)thì \(p=q+2=6k+5+2=6k+7\)
suy ra \(p+q=\left(6k+5\right)+\left(6k+7\right)=12k+12=12\left(k+1\right)⋮12\)
Vậy \(p+q⋮12\left(đpcm\right)\)
Cho p,q là các số nguyên tố lớn hơn 3 thỏa mãn p-q=2 chứng minh rằng p+q chia hết cho 12
SOS cứu
Để olm giúp em, em nhé!
Vì q là số nguyên tố lớn hơn 3 nên q có dạng:
q = 3n + 1 (n là số tự nhiên chẵn vì nếu n lẻ thì q là hợp số loại)
hoặc q = 3n + 2 (n là số tự nhiên lẻ vì nếu n chẵn thì q là hợp số loại)
Xét q = 3n + 1 ta có: p = 3n + 1 + 2 = 3n + 3 ⋮ 3 (loại)
Vậy q có dạng: q = 3n + 2 ⇒ p = 3n + 2 + 2 = 3n + 4
Theo bài ra ta có:
p + q = 3n + 2 + 3n + 4
p + q= 6n + 6 (n là số tự nhiên lẻ)
p + q = 6.(n+1)
Vì n là số lẻ nên n + 1⋮ 2; 6 ⋮ 6 ⇒ p + q ⋮ 12 (đpcm)
Tìm số nguyên tố p sao cho p; p+4;p+12 cũng là số nguyên tố
Cho p và \(p^2\)+2 là số nguyên tố . Chứng minh \(^{p^3}\)+2 cũng là số nguyên tố
Cho p là số nguyên tố lớn hơn 3. Chứng minh (p+5).(p+7) chia hết cho 24
P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8
( vì k(k+1) chia hết cho 2 với mọi k thuộc n)
P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2
. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N
. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N
(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24
cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24
các bạn giải hộ mình vs
Cho p và q là các số nguyên tố lớn hơn 3 và thỏa mãn p=q+2.tìm số dư khi chia p+q cho 12
Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2(k \(\in\) N)
Nếu q=3k+1 thì p=3k+3 nên p chia hết cho 3.Loại vì p là số nguyên tố lớn hơn 3.
Khi q=3k+2 thì p=3k+4
Vì q là số nguyên tố lớn hơn 3 nên k lẻ
Ta có p+q=6(k+1), chia hết cho 12 vì k+1 chẵn
Vậy số dư khi chia p+q cho 12 =0
p;q là các số nguyên tố >3 =>q=3k+1;3k+2
xét q=3k+1 =>p=3k+3=3(k+1) chia hết cho 3 (trái giả thuyết)
=>q=3k+2=>p=3k+2+2=3k+4
=>p+q=3k+2+3k+4=6k+6=6(k+1)
q= 3k+2 không chia hết cho 2
=>3k không chia hết cho 2
=>k không chia hết cho 2
=>k+1 chia hết cho 2=>k+1=2a
=>p+q=6(k+1)=6.2a=12a chia hết cho 12
vậy p+q chia hết cho 12