Do qq là số nguyên tố lớn hơn 33, nên q⋮̸3q⋮̸3, vậy qq có dạng
q=3k±1q=3k±1
+ Nếu q=3k+1⇒p=3k+3q=3k+1⇒p=3k+3 và do đó p ⋮ 3p ⋮ 3. Mặt khác pp là số nguyên tố lớn hơn 33, mâu thuẫn.
Vậy q=3k−1⇒p=3k+1q=3k−1⇒p=3k+1. Từ đó:
p+q=6k⇒p+q⋮3p+q=6k⇒p+q⋮3
Xét 22 số p+1p+1 và p−1p−1, ta thấy đây là 22 số chẵn liên tiếp (vì p,qp,q là các số nguyên tố lớn hơn 33 và (p+1)−(q+1)=2(p+1)−(q+1)=2). Do vậy trong hai số p+1p+1 và q+1q+1 có một số chia hết cho 44. Không mất tính tổng quát, giả sử (q+1) ⋮ 4(q+1) ⋮ 4, khi đó q+1=4m→p=4m−1q+1=4m→p=4m−1 và do đó p=4m+1p=4m+1. Từ đó:
p+q=4m⇒(p+q)⋮4p+q=4m⇒(p+q)⋮4
Do (3,4)=1(3,4)=1, nên ta có đpcm.