Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
toan bai kho
Xem chi tiết
Chu Thị Tuyết Nhung
Xem chi tiết
Yen Nhi
13 tháng 12 2021 lúc 0:20

Answer:

\(D=m^2-4mp+5p^2+10m-22p+20\)

\(=m^2-4mp+4p^2+p^2+10m-20p-2p+1+19\)

\(=\left(m^2-4mp+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+19\)

\(=\left(m-2p\right)^2+10\left(m-2p\right)+\left(p-1\right)^2+25-6\)

\(=[\left(m-2p\right)^2+10\left(m-2p\right)+25]+\left(p-1\right)^2-6\)

\(=\left(m-2p+5\right)^2+\left(p-1\right)^2-6\)

\(\forall m;p\) có \(\left(m-2p+5\right)^2+\left(p-1\right)^2-6\ge-6\) hay \(D\ge-6\)

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(m-2p+5\right)^2=0\\\left(p-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}m-2p+5=0\\p-1=0\end{cases}}\Rightarrow\hept{\begin{cases}m-2p+5=0\\p=1\end{cases}}\Rightarrow\hept{\begin{cases}m-2.1+5=0\\p=1\end{cases}}\Rightarrow\hept{\begin{cases}m=-3\\p=1\end{cases}}\)

Vậy giá trị nhỏ nhất của biểu thức \(D=-6\) khi \(\hept{\begin{cases}m=-3\\p=1\end{cases}}\)

Khách vãng lai đã xóa
toan bai kho
Xem chi tiết
MtP
Xem chi tiết
Võ Đông Anh Tuấn
24 tháng 3 2017 lúc 20:10

a ) \(P\left(x\right)=3x^2-27x+54=3\left(x^2-9x+15\right)\)

\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right].\)

\(\Rightarrow P\left(x\right)=3\left(x-3\right)\left(x-6\right)\)

Ta có : \(P\left(x\right)\ge0\Leftrightarrow\left(x-3\right)\left(x-6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x-6\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x-6\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge6\\x\le3\end{matrix}\right.\)

Vậy \(P\left(x\right)\ge0\Leftrightarrow x\le3\) hoặc \(x\ge6\)

b ) \(A=m^2-4mp+5p^2+10m-22p+28\)

\(=m^2-4mp+4p^2+10m-20p+p^2-2p+1+27\)

\(=\left(m-2p\right)^2+10\left(m-2p\right)+\left(p-1\right)^2+25+2\)

\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)

Vậy GTNN của A là 2 khi và chỉ khi \(\left\{{}\begin{matrix}p-1=0\\m-2p+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}p=1\\m=-3\end{matrix}\right..\)

Vậy ...............

\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right]\)

Huy Anh Lê
Xem chi tiết
Vũ Đình Thái
15 tháng 10 2020 lúc 21:02

Bài 1:

a)\(F=x^2+26y^2-10xy+14x-76y+59\)

         \(=\left(x^2-2\cdot x\cdot5y+25y^2\right)+\left(14x-70y\right)+\left(y^2-6x+9\right)+50\)

        \(=[\left(x-5y\right)^2+14\left(x-5y\right)+49]+\left(y-3\right)^2+1\)

          \(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\)

 Để Fmin=1 thì y=3;x=8

b)\(H=m^2-4mp+5p^2+10m-22p+28\)

         \(=\left(m^2-2\cdot m\cdot2p+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+27\)

         \(=[\left(m-2p\right)^2+2\cdot\left(m-2p\right)\cdot5+25]+\left(p-1\right)^2+2\)

           \(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)

Để Hmin=2 thì p=1;m=-3

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 2 2017 lúc 15:24

TRẦN NGỌC PHƯƠNG NGHI_7A...
Xem chi tiết
bae_ỉn yang hồ
4 tháng 11 2021 lúc 22:02

lỗi r bn ơi

Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 22:04

Bạn ghi lại đề đi bạn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 1 2017 lúc 6:16

Hà Thị Phương Anh
Xem chi tiết
Trương Thành Đạt
11 tháng 6 2015 lúc 8:10

A = \(\left(m^2-4mp+4p^2\right)+10\left(m-2p\right)+25+\left(p^2-2p+1\right)+2\)

  \(=\left(m-2p\right)^2+2.5.\left(m-2p\right)+5^2+\left(p-1\right)^2+2\)

  \(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)

Vậy: A min = 2 \(\Leftrightarrow m=-3;p=1\)