Giải phương trình sau:
\(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3\)
Giải các phương trình sau:
a) \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3\)
b) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
Bất phương trình là sao hả bạn? Có dấu ''='' à?
Giải phương trình sau:
a) \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3\)
b) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
2 -x/2002 + 1 -1 = 1-x/2003 + 1 - x/2004 + 1
=> 2004 - x/ 2002 = 2004 - x/ 2003 + 2004 -x/2004
=> (2004 -x) ( 1/2002-1/2003-1/2004)
ta thấy ( 1/2002-1/2003-1/2004) # 0
=> 2004 -x = 0 => x = 2004
giải pt:
\(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)
Giải phương trình sau: \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{201-x}{95}+3=0\)
\(\frac{201-X}{99}+\frac{203-X}{97}\)bằng \(\frac{205-X}{95}+3\)
\(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3\)
\(\Leftrightarrow\frac{201-x}{99}+1+\frac{203-x}{97}+1-\frac{205-x}{95}-1=4\)
\(\Leftrightarrow\frac{200-x}{99}+\frac{200-x}{97}-\frac{200-x}{95}=4\)
\(\Leftrightarrow\left(200-x\right)\left(\frac{1}{99}+\frac{1}{97}-\frac{1}{95}\right)=4\)
Bạn tự làm tiếp.
X = -104,695575
Đáp số ra lẻ quá bạn nhỉ
201-x/99+203-x/97=205-x/95+3
201-x/99+1 +203-x/97+1-205-x/95+1=4
200-x/99+200-x/97+200-x/95=4
(200-x)(1/99+1/97+1/95)=4
Giải hộ mik pt này nha ^.^ :
\(\frac{201-x}{99}\)+\(\frac{203-x}{97}\)+\(\frac{205-x}{95}\)+ 3 = 0
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
Giải PT:
\(\frac{201-x}{99}\) + \(\frac{203-x}{97}\)= \(\frac{205-x}{95}\)+ 3 = 0
Đề bài tương đương:
\(\frac{201-x}{99}-1+\frac{203-x}{97}-1-\frac{205-x}{95}-1=0\)
\(\Leftrightarrow\frac{201-x}{99}-\frac{99}{99}+\frac{203-x}{97}-\frac{95}{97}-\frac{205-x}{95}-\frac{95}{95}=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}-\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right).\left(\frac{1}{99}+\frac{1}{97}-\frac{1}{95}\right)=0\)
\(\Leftrightarrow300-x=0\left(\frac{1}{99}+\frac{1}{97}-\frac{1}{95}\ne0\right)\)
\(\Leftrightarrow x=300\)
Giải phương trình sau:
a) x+1/2004 + x+2/2003 = x+3/2002 + x+4/2001
b) 201-x/99 + 203-x/97 + 205-x/95 + 3 = 0
a) \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)
⇔ \(\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)
⇔ \(\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\)
⇔ \(\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)=0
Vì\(\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)<0 nên phương trinh đã cho tương đương:
x+2005=0 ⇔x=-2005
b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
⇔ \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
⇔ \(\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
⇔ \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
Vì \(\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)>0\) nên phương trình đã cho tương đương:
300-x=0 ⇔ x=300
Giải phương trình sau:
a)\(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)
b)\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
c)\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
a)\(\frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{95}+1=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
Mà \(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\Rightarrow300-x=0\Rightarrow x=300\)
b)\(\frac{2-x}{2002}+1=\frac{1-x}{2003}+2-\frac{x}{2004}\)
\(\Leftrightarrow\frac{2004-x}{2002}=\frac{1-x}{2003}+1+1-\frac{x}{2004}\)
\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}+\frac{2004-x}{2004}\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
Mà \(\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\ne0\Rightarrow2004-x=0\Rightarrow x=2004\)
c)\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}-2=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}-2\)
\(\Leftrightarrow\frac{x^2-10x-2000}{1971}+\frac{x^2-10x-2000}{1973}=\frac{x^2-10x-2000}{29}+\frac{x^2-10x-2000}{27}\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\right)=0\)
Mà\(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\ne0\)
\(\Rightarrow x^2-10x-2000=0\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)