Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm anh dũng
Xem chi tiết
Huynh Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2021 lúc 18:29

a) ĐKXĐ: \(x\notin\left\{0;3;1\right\}\)

Sửa đề: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

Ta có: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-3}{x-1}\)

b) Để A nguyên thì \(-3⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;-2;4\right\}\)

Lê Nguyên Thảo
Xem chi tiết
Hồng Phúc
21 tháng 12 2020 lúc 20:45

a, P xác định khi \(x^3-8\ne0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\ne0\)

\(\Leftrightarrow x\ne2\left(\text{Vì }x^2+2x+4>0\right)\)

b, \(P=\dfrac{3x^2+6x+12}{x^3-8}=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)

c, \(x=\dfrac{4001}{2000}\Rightarrow P=\dfrac{3}{\dfrac{4001}{2000}-2}=6000\)

Trần Anh Tuấn
Xem chi tiết
Đạt Phạm
Xem chi tiết
chi chi kuyoko
Xem chi tiết
Nguyệt
23 tháng 12 2018 lúc 20:59

đkcđ: x khác 0 và -3

\(A=\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x.\left(x-3\right)}\)

\(A=\frac{\left(x-3\right)^2}{x.\left(x-3\right)}-\frac{x^2}{x.\left(x-3\right)}+\frac{9}{x.\left(x-3\right)}\)

\(A=\frac{x^2-6x+9-x^2+9}{x.\left(x-3\right)}=\frac{-6x+18}{x.\left(x-3\right)}=\frac{-6.\left(x-3\right)}{x.\left(x-3\right)}=-\frac{6}{x}\)

để A thuộc Z => 6 chia hết cho x 

=>....

shitbo
23 tháng 12 2018 lúc 21:02

\(Taco\)

\(ĐKXD:x\ne0;x\ne3\)

\(\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}=\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-6x+9}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}=\frac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\)

\(=\frac{18-6x}{x-3}\)

\(A\inℤ\Leftrightarrow18-6x⋮x-3\Leftrightarrow18-6x+6x-18⋮x-3\Leftrightarrow0⋮x-3\)

Vậy vs mọi GT của x thì A nguyên

Phước Lộc
23 tháng 12 2018 lúc 21:05

a) để A xác định thì:

\(\hept{\begin{cases}x\ne0\\x-3\ne0\\x^2-3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-3\end{cases}}}\)

b) Rút gọn A:

\(A=\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)

\(=\frac{\left(x-3\right)^2}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{\left(x-3\right)^2-x^2+9}{x\left(x-3\right)}\)

\(=\frac{\left(x-3-x\right)\left(x-3+x\right)+9}{x\left(x-3\right)}\)

\(=\frac{-3\left(2x-3\right)+9}{x\left(x-3\right)}\)

\(=\frac{-6x+9+9}{x\left(x-3\right)}\)

\(=\frac{-6x+18}{x\left(x-3\right)}\)

\(=\frac{-6\left(x-3\right)}{x\left(x-3\right)}\)

\(=\frac{-6}{x}\)

c) Để A có giá trị nguyên thì \(-6⋮x\Rightarrow x\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Huynh Nguyên
Xem chi tiết
Bảo Ngọc Hoàng
Xem chi tiết
Nguyễn Minh Đăng
28 tháng 10 2020 lúc 12:56

a) đk: \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

b) Ta có:

\(P=\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{3x-8\sqrt{x}+27}{9-x}\)

\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)+2\sqrt{x}\cdot\left(\sqrt{x}-3\right)-3x+8\sqrt{x}-27}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{x+5\sqrt{x}+6+2x-6\sqrt{x}-3x+8\sqrt{x}-27}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{7\sqrt{x}-21}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{7\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{7}{\sqrt{x}+3}\)

c) Nếu x không là số chính phương => P vô tỉ (loại)

=> x là số chính phương khi đó để P nguyên thì:

\(\left(\sqrt{x}+3\right)\inƯ\left(7\right)\) , mà \(\sqrt{x}+3\ge3\left(\forall x\ge0\right)\)

\(\Rightarrow\sqrt{x}+3=7\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)

Vậy x = 16 thì P nguyên

Khách vãng lai đã xóa
Nguyễn Quốc Khánh
Xem chi tiết