Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo My Yusa
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 8 2017 lúc 3:13

Vì AM là đường trung tuyến của ΔABC nên BM = MC = 1/2 BC

Mà AM = 1/2 BC (gt) nên: AM = BM = MC.

Tam giác AMB có AM = MB nên ΔAMB cân tại M

Suy ra: ∠B = ∠A1 (tính chất tam giác cân) (1)

Tam giác AMC có AM = MC nên ΔAMC cân tại M

Suy ra: ∠C = ∠A2 (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: ∠B + ∠C = ∠A1 + ∠A2 = ∠(BAC) (3)

Trong ΔABC ta có:

∠B + ∠C + ∠(BAC) = 180o (tổng ba góc trong tam giác) (4)

Từ (3) và (4) suy ra: ∠(BAC) + ∠(BAC) = 180o ⇔ 2∠(BAC) = 180o

Hay ∠(BAC) = 90o.

Vậy ΔABC vuông tại A.

Phanh Hà
Xem chi tiết
Cô nàng cung bảo bình
Xem chi tiết
Teen titans go 5a
Xem chi tiết
Nguyễn Thị Linh Giang
30 tháng 4 2019 lúc 21:42

A B C M 1 2

Vì AM là đường trung tuyến của ΔABC nên BM = MC = 1/2 BC

Mà AM = 1/2 BC (gt) nên: AM = BM = MC.

Tam giác AMB có AM = MB nên ΔAMB cân tại M

Suy ra: ∠B = ∠A1 (tính chất tam giác cân) (1)

Tam giác AMC có AM = MC nên ΔAMC cân tại M

Suy ra: ∠C = ∠A2 (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: ∠B + ∠C = ∠A1 + ∠A2 = ∠(BAC) (3)

Trong ΔABC ta có:

∠B + ∠C + ∠(BAC) = 180o (tổng ba góc trong tam giác) (4)

Từ (3) và (4) suy ra: ∠(BAC) + ∠(BAC) = 180o ⇔ 2∠(BAC) = 180o

Hay ∠(BAC) = 90o.

Seulgi
30 tháng 4 2019 lúc 21:47

AM là trung tuyến

=> CM = MB = 1/2BC

AM = 1 nửa BC  => AM = 1/BC

=> AM = CM = BM 

=> tam giác CMA cân tại M và tam giác AMB cân tại M

=> góc C = (180 - góc CMA) : 2 và góc B = (180 - góc AMB) : 2 (tc)

=> góc C + góc B = \(\frac{180-\widehat{CMA}}{2}+\frac{180-\widehat{AMB}}{2}=\frac{180+180-\left(CMA+AMB\right)}{2}\)

\(=\frac{360-180}{2}=90\)

Xét tổng 3 góc

tieu yen tu
30 tháng 4 2019 lúc 21:48

                        Xét \(\Delta\)ABC có

                   AM là đường trung tuyến ứng với cạnh BC và bằng nửa cạnh BC

\(\Rightarrow\Delta ABC\)vuông tại A

\(\Rightarrow\)góc BAC = \(^{90^o}\)

Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 14:04

Ta có: ΔMAB cân tại M

nên \(\widehat{MAB}=\widehat{B}\)

Ta có: ΔMAC cân tại M

nên \(\widehat{MAC}=\widehat{C}\)

Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)

hay \(\widehat{BAC}=90^0\)

Susunguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 10 2017 lúc 14:47

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Vì AM là đường trung tuyến của ΔABC nên BM = MC = 1/2 BC

Mà AM = 1/2 BC (gt) nên: AM = BM = MC.

Tam giác AMB có AM = MB nên ΔAMB cân tại M

Suy ra: ∠B = ∠A1 (tính chất tam giác cân) (1)

Tam giác AMC có AM = MC nên ΔAMC cân tại M

Suy ra: ∠C = ∠A2 (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: ∠B + ∠C = ∠A1 + ∠A2 = ∠(BAC) (3)

Trong ΔABC ta có:

∠B + ∠C + ∠(BAC) = 180o (tổng ba góc trong tam giác) (4)

Từ (3) và (4) suy ra: ∠(BAC) + ∠(BAC) = 180o ⇔ 2∠(BAC) = 180o

Hay ∠(BAC) = 90o.

Vậy ΔABC vuông tại A.