So sánh : 200/201+201/202 và (200+201)/(201+202)
so sánh 200/201 + 201/202 và 200+201/201+202
\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)
Mà \(201\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
=> \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
so sánh
200/201+201/202 và 200+201/201+202
\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)
Mà \(201< 201+202\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
Vậy \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
so sánh : 200/201+201/202 và 200+201/201+202
Gọi d là UCLN(n,n+1)
Ta có:n+1 chia hết cho d
n chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số n/n+1 tối giản
ta co:(n,n+1)=dn
talai co:(n+1)-n=1 chia het cho d suy ra d=1.vayn/n+1 toi gian
1)So sánh các số
a.200/201+201/202 và 200+201/201+202
b)2014/2014*2015=2014:2014/2014*2015:2014=1/2015(rút gọn phân số)
2015/2015*2015=2015:2015/2015*2016:2015=1/2016(rút gọn phân số)
Mà 1/2015>1/2016
=>2014/2014*2015>2015/2015*2015
SO SÁNH 200/201+201/202 VÀ 200+201/201+202
GIÚP TỚ NHA!
Ta có:
\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+202}\)
Do\(\frac{200}{201}>\frac{200}{201+202},\frac{201}{202}>\frac{201}{201+202}\)
\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200}{201+202}+\frac{201}{201+202}\)
\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Vậy\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
so sánh 2 phân số \(\frac{200}{201}+\frac{201}{202}và\frac{200+201}{201+202}\)
Ta có:\(\frac{200}{201}>\frac{200}{201+202}và\frac{201}{202}>\frac{201}{201+202}\)
Suy ra\(\frac{200}{201}+\frac{201}{202}>\frac{200}{201+202}+\frac{201}{201+202}=\frac{200+201}{201+202}\)
Vậy\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Ta co:\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+202}\)
Vi \(\frac{200}{201}>\frac{200}{201+202},\frac{201}{202}>\frac{201}{201+202}\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Ta có : \(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)
Mà : \(201<201+202\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
\(hnhaminhhlai\)
so sánh :
a) 2009/2010 và 2010/2011
b)1/ 3^400 và 1/ 4^300
c)200/201 + 201/202 và 200+201/201+202
a)
Vì \(\frac{2009}{2010}< 1\Rightarrow\frac{2009}{2010}< \frac{2009+1}{2010+1}=\frac{2010}{2011}\)
Cần nhớ:
Nếu: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\left(n\inℕ^∗\right)\)
Và tương tự: \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\left(n\inℕ^∗\right)\)
b)Ta có:
\(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)
\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)
Vì: \(81^{100}>64^{100}\Leftrightarrow\frac{1}{81^{100}}< \frac{1}{64^{100}}\Leftrightarrow\frac{1}{3^{400}}< \frac{1}{4^{300}}\)
c) Ta có:
\(\frac{200+201}{201+202}=\frac{401}{403}< 1\)
\(\frac{200}{201}+\frac{201}{202}=1-\frac{1}{201}+1-\frac{1}{202}=2-\left(\frac{1}{201}+\frac{1}{202}\right)>1\)
=>\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
So sánh các số
200/201+201/202và 200+201/201+202
Ta có: \(\frac{200}{201}+\frac{201}{202}=\frac{200}{201+202}+\frac{201}{201+202}\)
Mà: \(201< 201+202\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Dễ thấy 200+201/201+202<1
Ta có 200/201=1-1/201;201/202=1-1/202
=>200/201+201/202=1-1/201+1-1/202
=1-1/201+1-1/202
=(1+1)-(1*201+1/202)
=2-(1/201+1/202)
Đễ thấy 1/201+1/202<1
=>2-(1/201+1/202)>1
Mà 200+201/201+202<1
=>200/201+201/202>200+201/201+202
Câu này của bạn Hà Như Thuỷ bị nhầm mà.
Phải là: \(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+202}\)
Không tính , hãy so sánh :
\(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}\)
\(B=\frac{199+200+201}{200+201+202}\)
\(\frac{199}{200}>\frac{199}{200+201+202}\)
\(\frac{200}{201}>\frac{200}{200+201+202}\)
\(\frac{201}{202}>\frac{201}{200+201+202}\)
=>\(A>B\)
Do \(\frac{199}{200}\)> \(\frac{199}{200+201+202}\), \(\frac{200}{201}\)>\(\frac{200}{200+201+202}\),\(\frac{201}{202}\)>\(\frac{201}{200+201+202}\)nên A>B