chứng minh rằng :1/2_1/4+1/8_1/16+1/32_1/64<1/3
Chứng minh rằng 1/2-1/4+1//8_1/16+1/32-1/64<1/3
b)
1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 = ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64 )
= 1/4 + 1/16 + 1/64
= 16/64 + 4/64 + 1/64
= 16+4+1/64 = 21/64
Ta có : 1/3 = 21/63
MÀ 21/64 < 21/63 => 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 = ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64 )
= 1/4 + 1/16 + 1/64
= 16/64 + 4/64 + 1/64
= 16+4+1/64 = 21/64
Ta có : 1/3 = 21/63
MÀ 21/64 < 21/63 => 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chứng minh rằng : \(\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+........+\dfrac{1}{2020^2}< \dfrac{1}{4}\)
\(A=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1010^2}\right)\)
1/2^2+1/3^2+...+1/2010^2<1/1*2+1/2*3+...+1/2009*2010=1-1/2010<1
=>A<1/4
Chứng minh rằng: 1/2-1/4+1/8-1/16+1/32-1/64 <1/3
Đặt A=1/2−1/4+1/8−1/16+1/32−1/64A
=1/2−1/4+1/8−1/16+1/32−1/64
2A=1−1/2+1/4−1/8+1/16−1/32
2A =1−1/2+1/4−1/8+1/16−1/32
3A=2A+A=1−1/64<1
⇒A<1/3
k cho minh nha
Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}.\)
\(\Rightarrow2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(\Rightarrow2A+A=\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)\)
\(\Rightarrow3A=1-\frac{1}{64}< 1\)\(\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)
Vậy \(A< \frac{1}{3}.\)
chứng minh rằng 1/2-1/4+1/8-1/16+1/32-1/64<1/3
đặt A=1/2-1/4+1/8-1/16+1/32-1/64
2A=1-1/2+1/4-1/8+1/16-1/32
2A-A=1-1/64 A=63/64
Vì 63/64<1/3
nên 1/2-1/4+1/8-1/16+1/32-1/64<1/3
Vậy 1/2-1/4+1/8-1/16+1/32-1/64<1/3
chứng minh rằng a 1/4 +1/16+1/36+1/64+1/100+1/144 +1/196+......+1/10000 <1/2
chứng minh rằng
1/2-1/4+1/8-1/16+1/32-1/64<1/3
Chứng minh rằng: A=1/4+1/16+1/36+1/64+...+1/576<1/2
chứng minh rằng
1/4+1/16+1/36+1/64+1/100+1/144+1/196<1/2
khó hiểu lên thông cảm
P = 1/4 + 1/16 + 1/36 + .. + 1/196 = 1/2² + 1/4² + 1/6² +...+ 1/12² + 1/14²
xét tổng quát với số nguyên dương k ta có:
(2k-1)(2k+1) = 4k² - 1 < 4k² = (2k)² => 1/(2k)² < 1/(2k-1)(2k+1)
=> 2/(2k)² < 2 /(2k-1)(2k+1) = 1/(2k-1) - 1/(2k+1) (*)
ad (*) cho k từ 1 đến 7
2/2² < 1/1 - 1/3
2/4² < 1/3 - 1/5
...
2/12² < 1/11 - 1/13
2/14² < 1/13 - 1/15
+ + cộng lại + +
2/2² + 2/4² +...+ 2/14² < 1/1 - 1/15 < 1
=> 2(1/2² + 1/4² +..+ 1/14²) < 1 => P < 1/2 (đpcm)
Chứng minh rằng: 1/4 + 1/16 + 1/36 + 1/64 + 1/144 + 1/19 < 1/2
bài này mình làm rùi nhưng bây giờ không nhớ ,