\(A=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1010^2}\right)\)
1/2^2+1/3^2+...+1/2010^2<1/1*2+1/2*3+...+1/2009*2010=1-1/2010<1
=>A<1/4
\(A=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1010^2}\right)\)
1/2^2+1/3^2+...+1/2010^2<1/1*2+1/2*3+...+1/2009*2010=1-1/2010<1
=>A<1/4
Chứng minh
a, A = 1 + \(\dfrac{1}{4}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{36}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{100}\) + \(\dfrac{1}{144}\) + \(\dfrac{1}{196}\) < 1
b, B = 1 + \(\dfrac{1}{4}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{16}\) + .... + \(\dfrac{1}{81}\) + \(\dfrac{1}{100}\) > \(1\dfrac{65}{132}\)
Chứng minh rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
chứng minh rằng :
a) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\) b)\(\dfrac{1}{5^2}+\dfrac{1}{6^5}+...+\dfrac{1}{2013^2}+\dfrac{1}{2014}>\dfrac{1}{5}\)
chứng minh rằng :
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right).\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right).\left(\dfrac{1}{64}-\dfrac{1}{5^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
Chứng minh rằng :
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2013^2}+\dfrac{1}{2014^2}>\dfrac{1}{5}\)
chứng minh :
a) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4}\) b) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2013^2}+\dfrac{1}{2014}>\dfrac{1}{5}\)
Cho tổng gồm 2014 số hạng: \(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2014}{4^{2014}}\). Chứng minh rằng \(S< \dfrac{1}{2}\)
chứng minh rằng :
b) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2013^2}+\dfrac{1}{2014}>\dfrac{1}{5}\)
mọi người ơi chú ý hộ mik là cái chỗ \(\dfrac{1}{2014}\) trên kia là đúng nha