Cho tam giác abc vuông tại a, có ab = ac .gọi k là trung điểm của cạnh bc a) chứng minh ∆akb=∆akc b) chứng minh ak là đường trung trực của bc
cho tam giác ABC vuông tại A có AB=AC . Gọi K là trung điểm của cạnh BC
a) Chứng minh tam giác AKB = tam giác AKC vf AK vuông góc với BC
b) Từ C kẻ đường vuông góc với BC, nó cắt AB tại E. Chứng minh EC//AK
c) Chứng minh CE=CB
a/ Ta có: AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung
=>> tg AKB = tg AKC (c.c.c)
Ta có: AB = AC (gt) => tg ABC vuông cân tại A
mà K là trung điểm của BC
=>> AK là đường trung trực của tg ABC
=> AK\(\perp\) BC
b/ Ta có: EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)
=>> EC // AK
c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A
=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ
=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)
Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)
Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)
=> tg BCE cân tại C =>> CE = CB
Bài 9: Cho tam giác ABC vuông tại A có AB = AC. Gọi K là trung điểm của BC
a. Chứng minh AKB = AKC
b. Chứng minh AK BC.
a) Theo đề bài: tam giác ABC vuông tại A có AB=AC. Suy ra ABC là tam giác vuông cân tại A.
Do K là trung điểm của BC nên kẻ AK là đường trung tuyến cũng như đường cao của tam giác ABC.
Xét tam giác AKB vuông tại K và Tam giác AKC vuông tại K ta có:
KB=KC(AK là đường trung tuyến)
\(\widehat{B}=\widehat{C}\)(Tam giác ABC cân)
Suy ra \(\Delta AKB=\Delta AKC\)(cạnh góc vuông-góc nhọn kề)
b)Bạn làm rõ phần này: AK=BC hay \(AK\perp BC\)?
câu a là tam giác AKB = tam giác AKC
Cho tam giác ABC vuông tại A,có AB =AC .Gọi K là trung điểm của cạnh BC
a,Chứng minh tam giác AKB = tam giác AKC và AK vuông góc BC
b,Từ C kẻ đường vuông góc với BC ,nó cắt đường thẳng AB tại E.Chứng minh EC//AK
c,Tính số đo AEC
cho tam giác ABC vuông tại A có AB=AC gọi K là trung điểm của cạnh BC
a,Chứng minh Tam giác AKB=Tam giác AKC và AK vuông góc BC
b,Từ C kẻ đường vuông góc với BC cắt AB tại E.Chứng minh AK//CE và CE=CB
c, So sánh AK và CE
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
=>ΔAKB=ΔAKC
=>góc AKB=góc AKC=180/2=90 độ
=>AK vuông góc BC
b: AK vuông góc BC
CE vuông góc CB
=>AK//CE
Xét ΔCEB vuông tại C có góc B=45 độ
nên ΔCEB vuông cân tại C
=>CE=CB
c: AK=1/2CE(do AK là đường trung bình của ΔCEB)
CHO TAM GIÁC ABC VUÔNG TẠI A,CÓ AB=AC. GỌI K LÀ TRUNG ĐIỂM CỦA CẠNH BC
a,CHỨNG MINH TAM GIAC AKB = TAM GIÁC AKC VÀ AK VUÔNG GÓC VỚI BC
b,từ C kẻ đường vuông góc với BC ,nó cắt AB tại E.Chứng minh EC//AK
Chứng minh CE = CB
cho tam giác ABC cân tại A ,có AB=AC . gọi K là trung điểm của cạnh BC.
a)chứng minh tam giác AKB=tam giác AKC và AK vuông góc vói BC .
b) từ C kẻ đường vuông góc với BC,nó cắt AB tại E.chứng minh EC song song AK .
c)chứng minh CE=CB
a) Xét tam giác AKB và tam giác AKC , có AB=AC (GT) BK là cạnh chung KB=KC ( K là trung điểm của BC) Do vậy tam giác AKB = tam giác AKC (c.c.c) b) Có tam giác AKB = AKC (cmt)
=> ˆAKB=ˆAKC⇒AKB^=AKC^. Mà ˆAKB+ˆAKC=ˆBKC=1800AKB^+AKC^=BKC^=1800. Do đó:
ˆAKB=ˆAKC=900⇒AK⊥BCAKB^=AKC^=90⇒AK⊥BC
Ta thấy: EC⊥BC ; AK⊥BC (cmt)
⇒EC∥AK⇒EC∥AK ()
c) Vì tam giác ABC là tam giác vuông cân tại A nên ˆB=45
Tam giác CBE vuông tại C có ˆB=45 ⇒ˆE=1800−(ˆC+ˆB)=180−(90+45)=45
⇒ˆE = ˆB⇒E^=B^ nên tam giác CBE cân tại C. Do đó CE=CB
Cho tam giác ABC có góc A = 90 độ và AB = AC. Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB = tam giác AKC và AK vuông góc BC
b) Từ C kẻ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
b: AK⊥BC
EC⊥BC
Do đó: AK//EC
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
b: AK⊥BC
EC⊥BC
Do đó: AK//EC
Cho tam giác ABC vuông tại A,có AB =AC .Gọi K là trung điểm của cạnh BC
a,Chứng minh tam giác AKB = tam giác AKC và AK vuông góc BC
b,Từ C kẻ đường vuông góc với BC ,nó cắt đường thẳng AB tại E.Chứng minh EC//AK
c,Tính số đo AEC
mng giúp e với ạ