cho tam giac ABC vuong tai A co BD la duong phan giac cua goc B ke DE vuong BC goi F la giao diem AB va AC
a) BD la trung truc AE
b) AD<DC
Cho tg ABC vuong taiA co BD la phan giac , ke DE vuong goc voi BC(E thuoc BC).goi F la giao diem cua AB va DE .cmr:
a)BD la duong trung truc cua AE
b)DF=DC
c)AD<DC
d)AE//FC
a, xét 2 tg vuông ABD và EBD có
góc A1 = góc E1
góc B1 = góc B2
BD cạnh chung
=> tg ABD= tg EBD
=> BA = BE
=> tg ABE cân
ta có trong tg cân đg phân giác hạ từ đỉnh xuống cạnh đối diện cũng là đg trug trực của tg
hay bd là đg trug trực của ae
b, xét 2 tg vuông ADF và EDC có
góc A2 = góc E2
AD = BE ( tg ABD = tg EBD )
góc D1 = góc D2 ( đối đỉnh )
=> tg ADF = tg EDC
=> DF = DC
c, ta có tg EDC có DC > DE ( ch > cgv )
mà AD = ED
=> AD < DC
d, ta có BA + AF = BF
BE + EC = BC
mà BA = BE
AF = EC ( tg ADF = tg EDF )
=> BF = BC
=> tg BFC cân
=> góc F = ( 180 độ - góc B ) /2 (1)
vì AB = EB => tam giác ABE cân
=> góc BAE = ( 180 độ - góc B ) /2 (2)
từ (1) và (2) => góc F = góc BAE
mà 2 góc này đồng vị
=> AE // FC
cho t/g ABC vuong tai A co BD la phan giac , ke DE vuong goc BC ( E thuoc BC) .Goi F la giao diem cua AB va DE
C/m : a/ BD la trung truc cua AE
b/ DF = DC
c/ AD< DC
d/AE // FC
Tam giac ABC vuong tai A co BD la tia phan giac. Ke DE vuong goc voi BC (E thuoc BC ). F la giao diem cua AB va DE. CMR:
a) BD la trung diem cua AE
b) DF=DC
c) AE // FC
a, Xét \(\Delta ABD;\Delta EBD\) có:
\(\widehat{B_1}=\widehat{B_2}\) (do BD là p/g góc B)
BD chung
\(\widehat{BAD}=\widehat{BED}=90^0\)
\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)
=> AB=EB => B nằm trên trung trực của AE
AD=ED => D nằm trên trung trực của AE
=> BD là trung trực của AE.
Vậy BD là trung trực của AE.
b, Xét \(\Delta ADF;\Delta EDC\) có:
\(\widehat{DAF}=\widehat{DEC}=90^0\)
AD=ED
\(\widehat{D_1}=\widehat{D_3}\) (đối đỉnh)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\Rightarrow DF=DC\)
Vậy DF=DC
c, Ta có:
\(CA\perp BF\) => CA là đường cao xuất phát từ C của \(\Delta BCF\)
\(FE\perp BC\) => FE là đường cao xuất phát từ F của \(\Delta BCF\)
Mà D là giao điểm của CA và FE => D là trực tâm của tam giác BCF
=> \(BD\perp FC\). (1)
Mà BD là trung trực của AE \(\Rightarrow BD\perp AE\) (2)
Từ (1) và (2) => AE//FC
Vậy AE//FC
Cho tam giac abc vuong tai a .duong phan giac bd.ke de vuong bc (e thuoc bc).goi i la giao diem cua bd va ae
Chung minh de=da
Chung minh bd la duong trung truc cua cua ae
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
b: Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
cho tam giac abc vuong tai a co bd la phan giac, kede vuong goc voi bc e thuoc bc goi f la giao diem cua ab va de . chung minh rang
Cho tam giac ABC vuong tai A co duong phan giac BD . Ke DE⊥BC ( EϵBC). Goi F la giao diem cua AB va DE
a) AB=EB
b) so sanh AD va DC
c) ▲BCF can
cho tam giac ABC vuong tai A, co duong phan giac BD. Ke DE vuong goc voi BC (E ϵ BC) . tren tia doi cua tia AB lay diem F sao cho AF = CE
chung minh a, ΔABD=ΔEBD
b, BD la duong trung trung truc cua doan thang AE
c, AD < DC
d, goc ADF= goc EDC va E,D,F thang hang
Cho tam giac ABC vuong tai A duong phan giac BE Ke EH vuong goc voi BC(H thuoc BC)
Goi K la giao diem cua AH va BE.CMR:
a,Tam giac ABE =tam giac HBE
b,BE la duong trung truc cua AH
cho tam giac abc vuong tai a co db la duong phan giac ke ae vuong goc voi bd [e thuoc bd ] ae cat bc o k hay chung minh dieu nay nhe +chung minh tam giac abk can +chung minh dk vuong goc voi bc +ke ah vuong goc voi bc chung minh ak la tia phan giac cua goc hac +goi i la giao diem cua ah va bd chung minh ik song song voi ac
bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha
1)Xét tam giác BAE và tam giác BKE:
BEA = BEK = 90 độ
BE chung
ABE = KBE ( BE là phân giác của B )
=> Tam giác BAE = Tam giác BKE( g-c-g)
=> BA = BK( 2 cạnh tương ứng)
=> Tam giác ABK cân ở B
2)Xét tam giác ABD và tam giác KBD:
BA = BK ( cm trên)
ABD = KBD ( BD là phân giác của B)
BD chung
=> Tam giác ABD = Tam giác KBD ( c-g-c)
=> BAD = BKD = 90 độ
=>KDB = KDC = 90 độ
=> KD vuông góc với BC
3) Ta thấy : BAD + ADB + DBA = 180 độ
=> ADB + DBA = 90 độ (1)
Mà AIE = BIH ( 2 góc đối đỉnh)
Mà BIH + IHB +HBI = 180 độ
=> BIH + HBI = 90 độ (2)
Mà DBA = HBI ( BD là phân giác của B ) (3)
Từ (1),(2) và (3) => AID = ADI (4)
=> Tam giác DAI cân ở A
=> AI = AD
Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)
AI = AD
AE chung
=> tam giác IAE = tam giác DAE(ch-cgv)
=> DAE = IAE ( 2 góc tương ứng)
=> AE là phân giác IAD
=> AK là phân giác HAC
4) Xét tam giác IAE và tam giác KAE:
AEI = KEI
EI chung
AE=EK(2 cạnh tương ứng)
=> Tam giác IAE = Tam giác KAE
=> AIE = KIE ( 2 góc tương ứng) (5)
Từ (4) và (5) =>KIE = EAD
Mà 2 góc này ở vị trí so le trong
=> IK song song với AC
Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình
(Dấu gạch ngang trên đầu thay cho dấu góc)
HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra