Những câu hỏi liên quan
Amy Nguyễn
Xem chi tiết

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O

Bình luận (0)
Tran Thanh Phúc Lâm
Xem chi tiết
iNfinitylove
Xem chi tiết
Nguyễn Đắc Phú
Xem chi tiết
Nguyễn Đắc Phú
7 tháng 4 2020 lúc 11:38

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

Bình luận (0)
 Khách vãng lai đã xóa
Lê  Anh  Quân
8 tháng 4 2020 lúc 19:41

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
15 tháng 4 2020 lúc 7:19

a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2

thay AB=3cm, AC=4cm va BC=5cm, ta có:

32+42=52

=> 9+16=25 (luôn đúng)

=> đpcm

b) có D nằm trên tia đối của tia AC

=> D,A,C thằng hàng và A nằm giữa D và C

=> DA+AC=DC

=> DA+4=6

=>DA=2(cm)

áp dụng định lý Pytago vào tam giác ABD vuông tại A có:

AB2+AD2=BD2

=> 32+22=BD2

=> 9+4=BD2

=> \(BD=\sqrt{13}\)(cm)

Bình luận (0)
 Khách vãng lai đã xóa
lý phương anh
Xem chi tiết
Anh2Kar六
20 tháng 2 2018 lúc 18:52

a/ Xét tam giác AHB và tam giác AHC có:

        AB = AC (vì tam giác ABC cân tại A)

       góc ABC = góc ACB (vì tam giác ABC cân tại A)

       AH: cạnh chung 

=> tam giác AHB = tam giác AHC (c.g.c)

Bình luận (0)
Tue Anh Do
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
9 tháng 12 2023 lúc 15:44

`#3107.101107`

`a,`

Xét $\triangle ABH$ và $\triangle ACH$:

`AB = AC` $(\triangle ABC$cân tại A`)`

\(\widehat{B}=\widehat{C}\) $(\triangle ABC$cân tại A`)`

`HB = HC ( H` là trung điểm của BC`)`

$=> \triangle ABH = \triangle ACH (c - g - c)$

Vì $\triangle ABH = \triangle ACH$

`=>`\(\widehat{AHB}=\widehat{AHC}\left(\text{2 góc tương ứng}\right)\)

Mà `2` góc này nằm ở vị trí kề bù

`=>` \(\widehat{AHB}+\widehat{AHC}=180^0\)

`=>` \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\) `=> AH \bot BC`

`b,`

Vì $\triangle ABH = \triangle ACH (a)$

`=>`\(\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\)

Xét $\triangle AHM$ và $\triangle AHN$:

AH chung

\(\widehat{MAH}=\widehat{NAH}\left(CMT\right)\)

\(\widehat{AMH}=\widehat{ANH}\left(=90^0\right)\)

$=> \triangle AHM = \triangle AHN (ch - gn)$

`c,`

Xét $\triangle HMB$ và $\triangle HNC$:

\(\widehat{HMB}=\widehat{HNC}\left(=90^0\right)\)

`HB = HC` `(`gt`)`

\(\widehat{HBM}=\widehat{HCN}\) $(\triangle ABC$ cân tại A`)`

$=> \triangle HMB = \triangle HNC (ch - gn)$

`=>`\(\widehat{BHM}=\widehat{CHN}\left(2\text{ góc tương ứng}\right)\) `(1)`

Vì \(\left\{{}\begin{matrix}\widehat{MHB}+\widehat{KHB}=\widehat{MHK}\\\widehat{NHC}+\widehat{IHC}=\widehat{NHI}\end{matrix}\right.\)

Mà \(\widehat{MHK}=\widehat{NHI}\left(\text{đối đỉnh}\right)\) `(2)`

Từ `(1)` và `(2)` `=>` \(\widehat{KHB}=\widehat{IHC}\)

Xét $\triangle KHB$ và $\triangle IHC$:

\(\widehat{KBH}=\widehat{ICH}\left(\widehat{ABC}=\widehat{ACB}\right)\)

`HB = HC`

\(\widehat{KHB}=\widehat{IHC}\)

$=> \triangle KHB = \triangle IHC (g - c - g)$

`=> BK = CI` `(2` cạnh tương ứng`)`

Ta có:

`AK = AB + BK`

`AI = AC + CI`

Mà `AB = AC; BK = CI`

$=> AK = AI => \triangle AIK$ cân tại A.

loading...

Bình luận (0)
đào kim chi
Xem chi tiết
KhảTâm
22 tháng 2 2020 lúc 21:27

A B C H M N

a) Vì AB = AC =10cm => (đpcm)

b) Xét \(\Delta AHB\)và \(\Delta AHC\)có;

AB = AC(gt)

\(\widehat{AHB}=\widehat{AHC}=90^o\)   

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(c.g.c\right)\)

\(\Rightarrow HB=HC\)(2 cạnh tương ứng)(1)

\(\Rightarrow\widehat{B}=\widehat{C}\)(2 góc tương ứng)(2)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\Rightarrow\)AH là tia phân giác của \(\widehat{A}\)

c) HM với HN?

Vì \(\Delta HMB;\Delta HNC\)là tam giác vuông nên từ  (1);(2) =>\(\Delta HMB=\Delta HNC\)

e)Xét \(\Delta AHC\)vuông: 

Áp dụng định lí Py ta go ta có:

   \(AC^2=CH^2+AH^2\)

\(12^2=6^2+AH^2\)

\(\Rightarrow AH^2=12^2-6^2=144-36=108\)

\(\Rightarrow AH=\sqrt{108}cm\)

Bình luận (0)
 Khách vãng lai đã xóa
KhảTâm
23 tháng 2 2020 lúc 7:51

Thông cảm nhé tối qua mình tắt mất nên nay làm tiếp:D

A B C M N O x y H

Vì \(\widehat{ABO}=\widehat{ACO}=90^o\)mà \(\widehat{ABC}=\widehat{ACB}=60^o\Rightarrow\widehat{BCO}=\widehat{CBO}=30^o\)

Do \(\widehat{BCO}=\widehat{CBO}=30^o\)nên \(\Delta OBC\)là tam giác cân

Bình luận (0)
 Khách vãng lai đã xóa
hiendinh1212
Xem chi tiết
vo phi hung
6 tháng 5 2018 lúc 21:02

â)Ta có :  AB = AC =10 cm (gt)

=> tam giác ABC cân tại A (2 cạnh bên = nhau )

b) Xét tam giác AHB va tam giac AHC ,co : 

\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao ) 

AB =AC =10 cm (gt )

AH là cạnh chung 

Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông ) 

=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng ) 

=>AH là tia phân giác của góc A 

c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác 

Nên :H là trung điểm của BC

=>BH = CH  = \(\frac{BC}{2}\)=12/2 = 6 cm

Bình luận (0)
vo phi hung
6 tháng 5 2018 lúc 21:13

TRẢ LỜI TIẾP CÂU Ở TRÊN NHA  ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI ) 

b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác  

Nên : H là trung điểm của BC

=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)

Xét : tam giác BMH và tam giác HCN , co :

 BH = CH = 6cm ( chứng minh trên ) 

\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)

\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau ) 

Do do:tm giác BHM = tam giác HCN

đ) Áp dụng định lý pytago vào tam giác  AHC vuông tại H 

\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)

=>\(AH=\sqrt{64}=8cm\)  OK CHÚC BẠN HỌC TỐT 

Bình luận (0)
Huy Hoang
12 tháng 4 2020 lúc 10:22

1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)

Bình luận (0)
 Khách vãng lai đã xóa
ngọc huyền
Xem chi tiết
Lan Trần Hương
15 tháng 3 2020 lúc 13:36

Bạn ơi có gải ko đăng lên đi

Bình luận (0)
 Khách vãng lai đã xóa
Huy Hoang
12 tháng 4 2020 lúc 10:18

1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)

Bình luận (0)
 Khách vãng lai đã xóa