A=\(\frac{2}{1+2}+\frac{2+3}{1+2+3}+\frac{2+3+4}{1+2+3+4}+...+\frac{2+3+...+20}{1+2+3+...+20}\)
Tính A = \(\frac{2}{1+2}+\frac{2+3}{1+2+3}+\frac{2+3+4}{1+2+3+4}+...+\frac{2+3+4+...+20}{1+2+3+4+...+20}\)
\(\frac{2}{1+2}+\frac{2+3}{1+2+3}+\frac{2+3+4}{1+2+3+4}+......+\frac{2+3+4+...+20}{1+2+3+4+...+20}\)
Tính\(y=\frac{2}{1+2}+\frac{2+3}{1+2+3}+\frac{2+3+4}{1+2+3+4}+...+\frac{2+3+4+...+20}{1+2+3+4+...+20}\)
1 CMR:
B=\(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+.....+\frac{3n+1}{3^n}< \frac{11}{4}\)(n thuộc N*;n>3)
A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
C=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^{20}-1}{3^{20}}>19\frac{1}{2}\)
Có : \(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow2A< 1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
Có: \(6A< 3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(6A-2A< 3-\frac{1}{3^{99}}< 3\)
\(\Rightarrow4A< 3\Rightarrow A< \frac{3}{4}\)(đpcm)
Tính:
A =\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{20}.\left(1+2+3+4+...+20\right)\)
Ta đã biết công thức: \(1+2+3+......+n-1+n=\frac{n\left(n+1\right)}{2}\).
Vậy:\(1+2=\frac{2\left(2+1\right)}{2}=\frac{2.3}{2}\); \(1+2+3=\frac{3\left(3+1\right)}{2}=\frac{3.4}{2}.\)a có:
Thay vào bài toán ta có:
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.....+\frac{1}{20}\left(1+2+3+....+20\right)\)
\(=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+....+\frac{1}{20}.\frac{20.21}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{21}{2}\)
\(=\frac{2+3+4+......+20+21}{2}=\frac{21\left(21+1\right)-1}{2}=\frac{461}{2}.\)
Tính:
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=\frac{1.2}{2}+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{20}.\frac{20.21}{2}=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+...+21}{2}=\frac{230}{2}=115\)
B = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+....+\frac{1}{20}\left(1+2+3+...+20\right)\)
Ta có: 1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)
=> \(1=\frac{1x2}{2};\frac{1}{2}\left(1+2\right)=\frac{2x3}{2x2};\frac{1}{3}\left(1+2+3\right)=\frac{3x4}{2x3};\)\(;\frac{1}{4}\left(1+2+3+4\right)=\frac{4x5}{2x4};...;\frac{1}{20}\left(1+2+3+...+20\right)=\frac{20x21}{2x20}\)
=> \(B=\frac{1x2}{2}+\frac{2x3}{2x2}+\frac{3x4}{2x3}+\frac{4x5}{2x4}+...+\frac{20x21}{2x20}\)
=> \(B=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
=> \(B=\frac{1}{2}\left(2+3+4+5+...+21\right)=\frac{1}{2}\left(\frac{21.22}{2}-1\right)\)
=> \(B=\frac{230}{2}=115\)
Đáp số: B=115
Tính : \(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+..+20\right)\)
\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)
\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)
\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)
\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)
\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)
\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)
\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)
\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)
\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)
\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)
\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)
\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)
\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)
\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)
\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)
\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)
\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)
TRÌNH BÀY GIÚP MÌNH NHA