CMR: với mọi số nguyên n thì :
52n+1+22n+1 22n+1 chia hết cho 23
\(CMR:\) a) \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6 với mọi số nguyên n
b) \(20^{n+1}-20^n\) chia hết cho 19 với mọi số tự nhiên n
M.n giúp mink nha, cảm ơn nhìu !!!
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
CMR a= (n+1)^4+n^4+1 chia hết cho một số chính phương khác 1 với mọi số nguyên
cmr với mọi số nguyên n thì :\(n^3+3n^2-2014n\) chia hết cho 6
cmr với mọi số nguyên n thì
\(n^3+3n^2-2014n\)chia hết cho 6
Ta co n3 + 3n2 - 4n - 2010n = n(n - 1)(n + 4) - 2010n
Ta co 2010n chia het cho 6
n(n-1) chia het cho 2 nen n(n-1)(n+4) chia het cho 2
Voi n = 3k thi n chia het cho 3 (1)
Voi n = 3k+ 1 thi n-1 chia het cho 3 (2)
Voi n = 3k + 2 thi (n + 4) chia het cho 3 (3)
Tu do n(n-1)(n+4) chia het cho 3
Vay n3 + 3n2 - 2014n chia het cho 6
CMR biểu thức: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với mọi số nguyên n
Ngọc Anh
Ta có :
n (2n - 3 ) - 2n ( n + 1 )
= 2n2 - 3n - 22 - 2n
= -5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n (2n - 3) - 2n (n + 1 ) luôn chia hết cho 5 với mọi số nguyên n
Ta có:
n(2n-3)-2n(n+1)
=2n2-3n-22-2n
=-5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Ta có :
n(2n-3)-2n(n+1)
=n.2n-n.3-2n.n-2n.1
=2n^2-3n-2n^2-2n
=-5n
-5n chia hết cho 5 với mọi số nguyên n . Vì -5 chia hết cho 5
Vậy n(2n-3)-2n(n+1) chia hết cho 5
CMR biểu thức n(3n-1)-3n(n-2) luôn chia hết cho 5 với mọi số nguyên n.
chứng minh rằng với mọi số nguyên dương n thì \(6^{2n}+19^n-2^{n+1}\)chia hết cho 17
mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17
62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17
vay bt chia het 17
CMR: với mọi số nguyên n thì
\(n^4+6n^3+11n^2+6n\) chia hết cho 24
Bài 1: Chứng minh rằng
a)a^5-a chia hết cho5
b) n^3+6n^2+8n chia hết cho 48 với mọi n chẵn
c) Cho a là số nguyên tố hớn hơn 3. CMR a^-1 chia hết cho 24
d) Nếu a+b+c chia hết cho 6 thì a^3+b^3+c^3 chia hết cho 6
e)2009^2010 không chia hết cho 2010
f) n^2+7n+22 không chia hết cho 9