Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng Senpai
Xem chi tiết
Nguyễn Linh Chi
7 tháng 8 2019 lúc 18:44

Bạn ơi đề bài có điều kiện a, b, c không vậy. Hay là a, b, c bất kì?

Dũng Senpai
7 tháng 8 2019 lúc 21:17

dạ a,b,c>0 ạ.em quên mất 

Nguyễn Linh Chi
7 tháng 8 2019 lúc 21:39

Với a, b, c >0

\(\frac{abc}{a^3+b^3+c^3}+\frac{2}{3}\ge\frac{ab+bc+ac}{a^2+b^2+c^2}\) (1)

<=> \(1-\left(\frac{abc}{a^3+b^3+c^3}+\frac{2}{3}\right)\le1-\frac{ab+bc+ac}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{1}{3}-\frac{abc}{a^3+b^3+c^3}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{3\left(a^3+b^3+c^3\right)}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{3\left(a^3+b^3+c^3\right)}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\left(a^2+b^2+c^2-ab-ac-bc\right)\left(\frac{1}{a^2+b^2+c^2}-\frac{a+b+c}{3\left(a^3+b^3+c^3\right)}\right)\ge0\)(2)

Ta có: \(a^2+b^2+c^2-ab-ac-bc=\frac{1}{2}\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right]\ge0\)

Với a,b, c>0

(1) <=> \(\frac{1}{a^2+b^2+c^2}\ge\frac{a+b+c}{3\left(a^3+b^3+c^3\right)}\)

\(\Leftrightarrow3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2a^3+2b^3+2c^3-ab^2-ac^2-ba^2-bc^2-ca^2-cb^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+a^2\left(a-c\right)+b^2\left(b-a\right)+b^2\left(b-c\right)+c^2\left(c-a\right)+c^2\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(a+c\right)\left(a-c\right)^2\ge0\)Luôn đúng với mọi a, b, c dương

Vậy (1) đúng

"=" xảy ra <=> a=b=c

Phan Hoàng Kim Uyên
Xem chi tiết
Thắng Nguyễn
26 tháng 6 2016 lúc 20:51

a)Ta có:

\(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)

Do \(\left(a-b\right)^2\ge0\),nên\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

b)Xét \(\left(a+b+c\right)^2+\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\)

Khai triển và rút gọn ta được:\(3\left(a^2+b^2+c^2\right)\)

Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

Kuruishagi zero
Xem chi tiết
Kuruishagi zero
7 tháng 12 2018 lúc 23:15

10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).

b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)

. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).

Vậy : (a + b + c)\(^2\) ≤  3( a\(^2\) + b\(^2\) + c\(^2\)).

Incursion_03
7 tháng 12 2018 lúc 23:22

Cách khác : Biến đổi tương đương

a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng

b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

Uyên Nhi
Xem chi tiết
Nguyen Duc Chinh
9 tháng 2 2016 lúc 15:53

em chi moi hoc lop 5 thoi a

ma oi nhe

 

 

bolyl vc
9 tháng 2 2016 lúc 15:54

thì lấy về phải pt  a)keo 2 ra ngoai 

                            b)keo 3 ra ngoai 

thì ta sẽ có điều cần chứng minh

 còn = thì khi ẩn = 0

bolyl vc
9 tháng 2 2016 lúc 15:56

b) mình sai kéo 2 ra ngoài nhé

Hoàng Đình Đại
Xem chi tiết
Con Chim 7 Màu
17 tháng 8 2019 lúc 13:32

Dat \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

Ta co: \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Ta d̃i CM:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Ta co:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\left(dpcm\right)\)

Dau '=' xay ra khi \(a=b=c\)

lê thị thủy
Xem chi tiết
Hoàng Đình Đại
Xem chi tiết
Nguyễn Văn Tuấn Anh
3 tháng 9 2019 lúc 20:37

\(\left(a+b\right)^4=\left(a+b\right)^2\left(a+b\right)^2\)

\(=\left(a^2+2ab+b^2\right)\left(a^2+2ab+b^2\right)\)

Lm nốt

tth_new
4 tháng 9 2019 lúc 9:42

Em nghĩ dùng tam giác Bát - cam :v

\(\frac{\frac{1\rightarrow\text{Bậc 0}}{\left|1\right|1|\rightarrow\text{Bậc 1 }}}{\frac{\left|1\right|2\left|1\right|\rightarrow\text{Bậc 2}}{\frac{|1\left|3\right|3\left|1\right|\rightarrow\text{Bậc 3}}{\left|1\right|4\left|6\right|4\left|1\right|\rightarrow\text{Bậc 4}}}}\)(em vẽ hình hơi xấu:v). Từ tam giác bát cam ta có hằng đẳng thức:

\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^2+b^4\)

Còn (a-b)4 thì nói ra hơi khó hiểu, đành khai triển thôi:v, mọi người nói giúp em với ạ.

tth_new
4 tháng 9 2019 lúc 9:43

Nhầm tí: Hằng đẳng thức:

\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

sdveb slexxx  acc 2 còn...
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 8:43

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Nguyễn Đức Chung
Xem chi tiết
ミ★Ƙαї★彡
20 tháng 8 2021 lúc 15:41

nó là bđt Cauchy Schwarz dạng Engel hoặc nhiều tên gọi khác ... 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)

Khách vãng lai đã xóa