tìm n để phân số có giá trị nguyên
-12/n
15/3-2
3n-5/n+4
tìm các giá trị nguyên của n để 10n^3-23n^2+14n-5 chia hết cho 2n-3
1) Tìm số tự nhiên n để:
a) 5/n-12 có giá trị là số nguyên
b)4/n-5 có giá trị là số nguyên
c)n+1/n-5 có giá trị là số nguyên tố
2) Chứng minh rằng phân số sau có giá trị là 1 số tự nhiên:
10^2018+8/9
TỚ CŨNG KHÔNG BIẾT.
CẬU BIẾT HOÁ GIẢI CÚ NÉM ZIC ZẮC KÉP WWW CỦA SHIROEMON KHÔNG ?
Bài 1:
Tìm số nguyên n để phân số A= \(\dfrac{1}{n+3}\)có giá trị nguyên
Bài 2 : Tìm số nguyên n để phân số B = \(\dfrac{n+4}{n+1}\)có giá trị nguyên
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
Để A nguyên
⇒ \(\left(n+3\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
n+3 1 -2
n -2 -4
\(B=\dfrac{n+3+1}{n+1}=1+\dfrac{3}{n+1}\)
Để B nguyên
\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 1 -1 3 -3
n 0 -2 2 -4
Tìm n để phân số sau có giá trị nguyên: n+3/4-5/4
tìm n thuộc z để các phân số sau có giá trị nguyên -12/n 15/n-2 8/n+1 A = 3n-5/n+4
cho B= \(\frac{5}{n-12}\)
a) Tìm giá trị của n để B là phân số.
b) Tìm giá trị nguyên để B có giá trị là số nguyên
Giải:
a) Để B là phân số <=> n - 12 \(\ne\)0 => n \(\ne\)12
b) Để B có giá trị là số nguyên <=> 5 \(⋮\)n - 12
<=> n - 12 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng:
n - 12 | 1 | -1 | 5 | -5 |
n | 13 | 11 | 17 | 7 |
Vậy ...
giải:a)để \(\frac{5}{n-12}\)là số nguyên nên suy ra:5 chia hết cho n-12 suy ra:n-12 thuộc vào Ư(5). MÀ Ư 5 =1,-1,5,-5 N-12=1.SUY RA:N=1+12=13;N-12=-1 .SUY RA:N=-1+12=11;N-12=5.SUY RA:N=5+12=17:N-12=-5.SUY RA=-5+12=7 VẬY N=13,11,17,7 #NHỚ K CHO MK NHA
Cho \(A=\frac{n+5}{n+4}\)với n thuộc Z
a)Tìm điều kiện của số nguyên n để A có giá trị là phân số.
b) Tìm giá trị của phân số A khi n = 1; n = -1.
c)Tìm số nguyên n để phân số A có giá trị là số nguyên.
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
Tìm giá trị nguyên của n để mỗi phân số có giá trị nguyên
3n-5/n+4
Để \(\frac{3n-5}{n+4}\)có giá trị nguyên thì:
\(3n-5⋮n+4\)
\(\Rightarrow3\left(n+4\right)-17⋮n+4\)
\(\Rightarrow-17⋮n+4\)
Vì \(n\in Z\Rightarrow n+4\inƯ\left(-17\right)=\left\{\mp1;\mp17\right\}\)
Ta có bảng sau:
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
Vậy \(n\in\left\{-3;-5;13;-21\right\}\)
tìm các số nguyên n để phân số sau có giá trị nguyên n-5/n-3
Để n−5/n−3 có giá trị nguyên thì:
n−5⋮n−3
⇔(n−3)−2⋮n−3
Vì n−3⋮n−3
⇒−2⋮n−3
⇔n−3 ∈Ư(2)= {±1;±2}
⇔n∈ {4;2;5;1}
Vậy để n−5/n−3 có giá trị nguyên thì: x∈ {1;2;4;5}