x+1/2013 + x+2/2012=x+3/2011 + x+4/2010
\(\dfrac{x+4}{2010}\)+\(\dfrac{x+3}{2011}\)=\(\dfrac{x+2}{2012}\)+\(\dfrac{x+1}{2013}\)
\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)
\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)
\(\left(x+2014\right)\times\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)
Vì \(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\)
=> \(x+2014=0\)
\(x=0-2014\)
\(x=-2014\)
Tìm x biết (x+4) /2010 + (x+3) / 2011 = (x+2) /2012 + (x+1) /2013
(x + 4)/2010 + (x+3)/2011 = (x+2)/2012 + (x+1)/2013
<=> [(x + 4)/2010 + 1] + [(x+3)/2011 + 1] = [(x+2)/2012 + 1] + [(x+1)/2013 + 1]
<=> (x + 2014)/2010 + (x + 2014)/2011 = (x + 2014)/2012 + (x + 2014)/2013
<=> (x + 2014)/2010 + (x + 2014)/2011 - (x + 2014)/2012 - (x + 2014)/2013 = 0
<=> (x + 2014).(1/2010 + 1/2011 - 1/2012 - 1/2013) = 0
Ta thấy (1/2010 + 1/2011 - 1/2012 - 1/2013) ≠ 0
Vậy suy ra x = -2014
x-1 / 2013 + x-2 / 2012 + x-3 / 2011 = x-4 / 2010 + x-5 / 2009 + x-6 / 2008
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)
=>x-2014=0
hay x=2014
tìm x (1/2+1/3+...+1/2013) *x= 2012 +2011/2+2010/3+...+2/2011+1/2012
x-1/2013+x-2/2012=x-3/2011+x-4/2010
Ta có: \(\frac{x-1}{2013}+\frac{x-2}{2012}=\frac{x-3}{2011}+\frac{x-4}{2010}\)
\(\Rightarrow\frac{x-1}{2013}+1+\frac{x-2}{2012}+1=\frac{x-3}{2011}+1+\frac{x-4}{2010}+1\)
\(\Rightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2014}{2011}+\frac{x-2014}{2010}=0\)
\(\Rightarrow\left(x-2014\right).\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2011}\right)=0\)
Vì \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\ne0\)
=> x - 2014 =0
=> x = 2014
Vậy x = 2014
tìm x biết: x-1/2013 + x-2/2012 - x-3/2011= x-4/2010
\(\frac{x-1}{2013}+\frac{x-2}{2012}-\frac{x-3}{2011}=\frac{x-4}{2010}\)
\(\frac{x-1}{2013}+\frac{x-2}{2012}-\frac{x-3}{2011}-\frac{x-4}{2010}=0\)
\(\frac{x-1}{2013}-1+\frac{x-2}{2012}-1-\frac{x-3}{2011}+1-\frac{x-4}{2010}+1=0\)
\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)-\left(\frac{x-3}{2011}-1\right)-\left(\frac{x-4}{2010}-1\right)=0\)
\(\frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}-\frac{x-2014}{2010}=0\)
\(\left(x-2014\right).\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
\(x-2014=0:\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)\)
\(x-2014=0\)
\(x=2014\)
Nhớ tk cho mình nha =3
A.R.M.Y FIGHTING!!!!
x-1/2013+x-2/2012=x-3/2011+x-4/2010
Tìm x
Tìm x: \(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)
\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)
`=> (x+2014) (1/2010 + 1/2011-1/2012-1/2013)=0`
`=> x+2014=0` ( vì `1/2010 + 1/2011-1/2012-1/2013≠0 )`
`=>x=-2014`
tìm x,biet(1/2+1/3+.............+1/2012+1/2013).x=2012/1+2011/2+2010/3+......+2/2011+1/2012