Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Nguyễn Tố Như
Xem chi tiết
Aki Tsuki
27 tháng 3 2017 lúc 19:00
Nguyễn Tiến Đạt
Xem chi tiết
Lê Anh Tú
22 tháng 2 2018 lúc 17:11

Ta có: 36-y2=8(x-2010)2. => y2=36-8(x-2010)2 

+)Nếu y=0 (

\(\Rightarrow y^2=0\Rightarrow36-8\left(x-2010\right)^2=0\Rightarrow8\left(x-2010\right)^2=36\)

\(\Rightarrow\left(x-2010\right)^2=4,5\)ko thỏa mãn vì )

+)Nếu y khác 0

\(\Rightarrow y^2>0\Rightarrow36-8\left(x-2010\right)^2>0\) 

\(\Rightarrow8\left(x-2010\right)^2>36\)

\(\Rightarrow\left(x-2010\right)^2>4,5\)

Mà (x-2010)2 là số chính phương \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\) 

Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\Rightarrow36-y^2=8.0\Rightarrow y^2=36\) 

 \(\Rightarrow y=\sqrt{36}=6\Rightarrow x=2010;y=6\)(thỏa mãn)

Với \(\left(x-2010\right)^2=1\Rightarrow36-y^2=8\Rightarrow y^2=28\) (ko thỏa mãn)

Với \(\left(x-2010\right)^2=4\Rightarrow\)x-2010=2 hoặc x- 2010=-2

\(\Rightarrow\orbr{\begin{cases}x=2012\left(TM\right)\\x=2008\left(TM\right)\end{cases}}\)

\(\Rightarrow36-y^2=8.4=32\Rightarrow y^2=4=2^2\Rightarrow y=2\)(do y thuộc N) 

\(\Rightarrow\orbr{\begin{cases}x=2010\\y=6\end{cases};\orbr{\begin{cases}x=2012\\y=4\end{cases};\orbr{\begin{cases}2008\\y=2\end{cases}}}}\)

piojoi
Xem chi tiết
Toru
2 tháng 9 2023 lúc 22:24

Ta có: \(y^2\ge0\forall y\in Z\)

\(\Rightarrow-y^2\le0\forall y\in Z\)

\(\Rightarrow36-y^2\le36\forall y\in Z\)

mà \(36-y^2=8\left(x-2010\right)^2\) (*)

nên \(8\left(x-2010\right)^2\le36\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\le\dfrac{36}{8}< 5\)

Mặt khác: \(\left(x-2010\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;2;3;4\right\}\)   (1)

Lại có: \(x\in Z\) nên \(x-2010\in Z\) (2)

Từ (1) và (2) \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)

+, Với \(x-2010=0\Leftrightarrow x=2010\) , (*) trở thành:

\(36-y^2=0\)

\(\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=6\\y=-6\end{matrix}\right.\left(tm\right)\)

+, Với \(\left(x-2010\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x-2010=1\\x-2010=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2011\\x=2009\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\)

\(\Rightarrow y^2=28\Rightarrow y=\pm\sqrt{28}\left(ktm\right)\)

+, Với \(\left(x-2010\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-2010=2\\x-2010=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\cdot4\)

\(\Rightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\left(tm\right)\)

Vậy ...

Nguyễn Tiến Đạt
Xem chi tiết
Lê Nhật Phương
31 tháng 3 2018 lúc 15:50

\(36-y^2=8\left(x-2010\right)^2+y^2=36\)

\(\text{Do: }y^2\ge0\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)

Do đó: \(\left(x-2010\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)

\(\Rightarrow y^2=36\text{ nen }y=6\)

Với \(\left(x-2010\right)^2=1\Rightarrow\orbr{\begin{cases}x=2010\\y^2=36-8=28\left(\text{loai}\right)\end{cases}}\)

Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x=2012\\y^2=36-32=4\Rightarrow y=2\end{cases}}\)

Các cặp số thỏa mãn yêu cầu đề bài là: (2010; 6), (2010; 2).

loi ngoc
Xem chi tiết
Hoàng Mạnh
1 tháng 12 2023 lúc 22:25

phương trình bậc hai với hai biến x và y. Ta có thể giải nó bằng cách đặt (y = 5\cos{\theta}) (vì (|y| \leq 5)), từ đó suy ra (x = 2016 + \frac{5}{2}\tan{\theta}). Vì (x, y \in Z) nên (\tan{\theta}) phải là một số hữu tỉ. Ta có thể tìm các giá trị của (\theta) sao cho (\tan{\theta}) là một số hữu tỉ, từ đó suy ra các giá trị tương ứng của (x) và (y).

nguyen thi bao tien
Xem chi tiết
Nguyễn Hưng Phát
21 tháng 7 2018 lúc 16:30

\(8\left(x-2010\right)^2\ge0\Rightarrow36-y^2\ge0\)

\(\Rightarrow36\ge y^2\)\(\Rightarrow y^2\in\left\{0,1,4,9,16,25,36\right\}\)

 Xét \(y^2=0\Rightarrow8\left(x-2010\right)^2=36\Rightarrow\left(x-2010\right)^2=\frac{36}{8}=\frac{9}{2}\)(loại)

Xét \(y^2=1\Rightarrow8\left(x-2010\right)^2=36-1=35\Rightarrow\left(x-2010\right)^2=\frac{35}{8}\)(loại)

Bạn xét tiếp nha :))

Edogawa Conan
19 tháng 6 2019 lúc 21:37

Ta có: (x - 2010)2 \(\ge\)\(\forall\) x <=> 8(x - 2010)2 \(\ge\)\(\forall\)x

<=>36 - y2 \(\ge\)0

<=> 36 \(\ge\)y2

<=> y2 \(\le\)36

<=> |y| \(\le\)6

Do y \(\in\)N  => 0 \(\le\)y < 6

+) Với y = 0 => 36 - 02 = 8(x - 2010)2

=> 36 = 8(x - 2010)2

=> (x - 2010)2 = 36 : 8 (ko thõa mãn)

+) Với y = 1 => 36 - 12 = 8(x - 2010)2

=> 35 = 8(x - 2010)2

=> (x - 2010)2 = 35 : 8 (ko thõa mãn)

+) Với y = 2 => 36 - 22 = 8(x - 2010)2

=> 32 = 8(x - 2010)2

=> (x - 2010)2 = 32 : 8

=> (x - 2010)2 = 4 = 22

=> \(\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}}\)

=> \(\orbr{\begin{cases}x=2012\\x=2008\end{cases}}\)

+) Với y = 3 => 36 - 32 = 8(x - 2010)2

=> (x - 2010)2 = 27 : 8 (ko thõa mãn)

+) Với y = 4 => 36 - 42 = 8(x - 2010)2

=> (x - 2010)2 = 20 : 8 (ko thõa mãn)

+) Với y = 5 => 36 - 52 = 8(x - 2010)2

=> (x - 2010)2 = 11 : 8 (ko thõa mãn)

Vậy ...

Nguyễn Bích Trâm
Xem chi tiết
NGUYỄN THẾ HIỆP
20 tháng 2 2017 lúc 17:39

Ta có: VP\(\ge0\)=> VT \(\ge0\)

Ta có: VT\(\le25\)=> VP\(\le25\)\(\Leftrightarrow8\left(x-2016\right)^2\le25\Leftrightarrow\left(x-2016\right)^2\le\frac{25}{8}< 4\)

Do \(x\in N\)=> \(\left(x-2016\right)^2=1\Leftrightarrow x=2017\)hoặc \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\)

Khi đó: \(25-y^2=8\Leftrightarrow y^2=17\)(vô nghiệm y tự nhiên)

hoặc \(25-y^2=0\Leftrightarrow y^2=25\Leftrightarrow y=5\)

Vậy x=2016, y=5

Thaodethuong
Xem chi tiết
vy phan
Xem chi tiết
Akai Haruma
8 tháng 10 2023 lúc 20:03

Lời giải:

$y^2=36-8(x-2024)^2\leq 36$ (do $8(x-2024)^2\geq 0$)

$\Rightarrow y\leq 6$

Lại có: $y^2=36-8(x-2024)^2$ chẵn nên $y$ chẵn

$\Rightarrow y\in\left\{0; 2; 4; 6\right\}$

Nếu $y=0$ thì $8(x-2024)^2=36$

$\Rightarrow (x-2024)^2=\frac{36}{8}\not\in\mathbb{N}$ (loại) 

Nếu $y=2$ thì $8(x-2024)^2=36-y^2=36-2^2=32$

$\Rightarrow (x-2024)^2=4\Rightarrow x-2024=\pm 2$

$\Rightarrow x=2026$ hoặc $x=2022$ (tm) 

Nếu $y=4$ thì $8(x-2024)^2=36-4^2=20$

$\Rightarrow (x-2024)^2=\frac{20}{8}\not\in\mathbb{N}$ (loại) 

Nếu $y=6$ thì $8(x-2024)^2=36-6^2=0$

$\Rightarrow x-2024=0$

$\Rightarrow x=2024$ (tm)

Vậy............