Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhoc Nhi Nho
Xem chi tiết
Hoàng Ngọc Minh Hiền
Xem chi tiết
Thái Đào
Xem chi tiết
Hoang Hung Quan
21 tháng 3 2017 lúc 20:45

Giải:

\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}b+c=-a\\a+b=-c\end{matrix}\right.\)

\(\Rightarrow ab+2bc+3ca\)

\(=ab+ca+2bc+2ca\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=a\left(-a\right)+2c\left(-c\right)\)

\(=-a^2-2c^2\le0\)

Vậy \(ab+2bc+3ca\le0\) (Đpcm)

qwerty
21 tháng 3 2017 lúc 20:14

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).

bruh
Xem chi tiết
libra is my cute little...
Xem chi tiết
I - Vy Nguyễn
21 tháng 3 2020 lúc 17:33

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

Khách vãng lai đã xóa
Xem chi tiết
Girl
25 tháng 2 2019 lúc 15:30

\(ab+2bc+3ac\)

\(=\left(ab+ac\right)+\left(2bc+2ac\right)\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=-a^2-2c^2\le0\)

I - Vy Nguyễn
21 tháng 3 2020 lúc 17:34

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

Khách vãng lai đã xóa
0o0^^^Nhi^^^0o0
Xem chi tiết
 Mashiro Shiina
31 tháng 3 2018 lúc 21:22

\(ab+2bc+3ac\)

\(=ab+2bc+ac+2ac\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=-a^2-2b^2\le0\) (đúng)

Dấu "=" khi \(x=y=z=0\)

Văn Tú
31 tháng 3 2018 lúc 21:39

Ta có:

a+b+c=0

=> a + b = -c

=> (a+b)2 = c2

=> a2 + 2ab + b2 = c2

=> ab = \(\dfrac{c^2-a^2-b^2}{2}\) (1)

Tương tự ta có: a2 + 2ac + c2 = b2

b2 + 2bc + c2 = a2

=> ac = \(\dfrac{b^2-a^2-c^2}{2}\) => 3ac = \(\dfrac{3b^2-3a^2-3c^2}{2}\) (2)

bc = \(\dfrac{a^2-b^2-c^2}{2}\) => 2bc = a2 - b2 - c2 (3)

Thay (1), (2), (3) vào bdt cần ch/m, ta có:

ab + 2bc + 3ac ≤ 0

<=> \(\dfrac{c^2-a^2-b^2}{2}\) + a2 - b2 - c2 + \(\dfrac{3b^2-3a^2-3c^2}{2}\)

<=> c2 - a2 - b2 + 2a2 - 2b2 - 2c2 + 3b2 - 3a2 - 3c2 ≤ 0

<=> -2a2 -4c2 ≤ 0

<=> -2(a2 + 2c2) ≤ 0 (Bdt đúng với mọi a, c)

Dau "=" xay ra khi a2 + 2c2 = 0

<=> a = c = b = 0.

Iam clever and lucky
Xem chi tiết
Haruhiro Miku
12 tháng 5 2018 lúc 14:06

Giải:

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm). 

Wall HaiAnh
12 tháng 5 2018 lúc 14:08

Trả lời

Theo đề ra ta có:

a+b+c=0

\(\Rightarrow\)ab+2ab+3ac=-a(a+c)-2c(a+c)+3ac

          =\(-a^2-ac-2ac-2ac^2+3ac\)

           \(=-\left(a^2+2c^2\right)\le0\)

Vậy nếu a+b+c=0 thì \(ab+2bc+3ac\le0\left(đpcm\right)\)

I - Vy Nguyễn
21 tháng 3 2020 lúc 17:38

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

Khách vãng lai đã xóa
bou99
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2021 lúc 17:42

1.

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

Ta có:

\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)

\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)

\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 17:45

b.

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)