\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
Chứng minh \(\frac{1}{15}
Cho A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)Chứng minh rằng:\(\frac{1}{15}< A< \frac{1}{10}\)
Ta có : \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};....;\frac{99}{100}< \frac{100}{101}\)
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)\(\Rightarrow B>A\)
\(\Rightarrow A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(\Rightarrow A.B=\frac{1}{101}\)
Vì \(B>A\)\(\Rightarrow A.B>A.A=A^2\)
\(\Rightarrow\frac{1}{101}>A^2\)
Mà \(\frac{1}{10^2}>\frac{1}{101}>A^2\Rightarrow\frac{1}{10^2}>A^2\)
\(\Rightarrow\frac{1}{10}< A\left(1\right)\)\(\)
Ta lai có :
\(\frac{1}{2}=\frac{1}{2};\frac{3}{4}>\frac{2}{3};\frac{5}{6}>\frac{4}{5};...;\frac{99}{100}>\frac{98}{99}\)
Đặt \(C=\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A.C=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\right)\)
\(\Rightarrow A.C=\frac{1}{2}.\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A.C=\frac{1}{200}\)
Vì \(A>C\)
\(\Rightarrow A^2>A.C=\frac{1}{200}\)
Mà \(A^2>\frac{1}{200}>\frac{1}{15^2}\)
\(\Rightarrow A^2>\frac{1}{15^2}\)
\(\Rightarrow A>\frac{1}{15}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\frac{1}{15}< A< \frac{1}{10}\)
\(\RightarrowĐPCM\)
Bài giải
\(\frac{1}{2}< \frac{2}{3}\text{ ; }\frac{3}{4}< \frac{4}{5}\text{ ; }\frac{5}{6}< \frac{6}{7}\text{ ; }...\text{ ; }\frac{99}{100}< \frac{100}{101}\)
\(\text{Đặt }B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
\(\Rightarrow\text{ }A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
\(\Rightarrow\text{ }A\cdot A< A\cdot B=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right)\)
\(A\cdot A< A\cdot B=\frac{1}{101}< \frac{1}{10}\)
\(A^2< \frac{1}{10}\text{ }\Rightarrow\text{ }A< \frac{1}{10}^{^{\left(1\right)}}\)
\(\frac{1}{2}=\frac{1}{2}\text{ ; }\frac{3}{4}>\frac{2}{3}\text{ ; }\frac{5}{6}>\frac{4}{5}\text{ ; }...\text{ ; }\frac{99}{100}>\frac{98}{99}\)
\(\text{Đặt }C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\)
\(A\cdot C=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\right)\)
\(A\cdot C=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\)
\(A\cdot C=\frac{1}{200}\)
\(\text{Vì }A>C\text{ }\Rightarrow\text{ }A^2>A\cdot C=\frac{1}{200}\)
\(\text{Mà }A^2>\frac{1}{200}>\frac{1}{15^2}\)
\(\Rightarrow\text{ }A>\frac{1}{15}^{^{\left(2\right)}}\)
\(\text{Từ }^{\left(1\right)}\text{ và }^{\left(2\right)}\)
\(\Rightarrow\text{ }\frac{1}{15}< A< \frac{1}{10}\)
\(\Rightarrow\text{ }\text{ĐPCM}\)
Bài giải
\(\frac{1}{2}< \frac{2}{3}\text{ ; }\frac{3}{4}< \frac{4}{5}\text{ ; }\frac{5}{6}< \frac{6}{7}\text{ ; }...\text{ ; }\frac{99}{100}< \frac{100}{101}\)
\(\text{Đặt }B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
\(\Rightarrow\text{ }A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
\(\Rightarrow\text{ }A\cdot A< A\cdot B=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right)\)
\(A\cdot A< A\cdot B=\frac{1}{101}< \frac{1}{10}\)
\(A^2< \frac{1}{10}\text{ }\Rightarrow\text{ }A< \frac{1}{10}^{^{\left(1\right)}}\)
\(\frac{1}{2}=\frac{1}{2}\text{ ; }\frac{3}{4}>\frac{2}{3}\text{ ; }\frac{5}{6}>\frac{4}{5}\text{ ; }...\text{ ; }\frac{99}{100}>\frac{98}{99}\)
\(\text{Đặt }C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\)
\(A\cdot C=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\right)\)
\(A\cdot C=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\)
\(A\cdot C=\frac{1}{200}\)
\(\text{Vì }A>C\text{ }\Rightarrow\text{ }A^2>A\cdot C=\frac{1}{200}\)
\(\text{Mà }A^2>\frac{1}{200}>\frac{1}{15^2}\)
\(\Rightarrow\text{ }A>\frac{1}{15}^{^{\left(2\right)}}\)
\(\text{Từ }^{\left(1\right)}\text{ và }^{\left(2\right)}\)
\(\Rightarrow\text{ }\frac{1}{15}< A< \frac{1}{10}\)
\(\Rightarrow\text{ }\text{ĐPCM}\)
Chứng minh rằng
a) \(\frac{1}{5}<\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}<\frac{2}{5}\)
b) \(\frac{1}{15}<\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}<\frac{1}{10}\)
OK. Tối nhớ giải hộ mik nha
Mik hứa sẽ lik-e cho bạn
\(\left(1\right)\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}>\frac{1}{5}\)
\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{13}{60}+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)+...\left(\frac{1}{98}-\frac{1}{99}\right)\)
Ta thấy \(\frac{13}{60}>\frac{12}{60}=\frac{1}{5}\)
\(\frac{1}{6}-\frac{1}{7}>0\)
\(\frac{1}{8}-\frac{1}{9}>0\)
\(...\)\(\frac{1}{98}-\frac{1}{99}>0\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}>\frac{1}{5}\)
\(\left(2\right)\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}< \frac{2}{5}\)
\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}\right)-\left(\frac{1}{7}-\frac{1}{8}\right)-\left(\frac{1}{9}-\frac{1}{10}\right)-...-\left(\frac{1}{97}-\frac{1}{98}\right)-\frac{1}{99}\)
\(=\frac{23}{60}-\left(\frac{1}{7}-\frac{1}{8}\right)-\left(\frac{1}{9}-\frac{1}{10}\right)-...-\left(\frac{1}{97}-\frac{1}{98}\right)-\frac{1}{99}\)
Ta thấy \(\frac{23}{60}< \frac{24}{60}=\frac{2}{5}\)
\(\frac{1}{7}-\frac{1}{8}>0\)
\(\frac{1}{9}-\frac{1}{10}>0\)
\(...\frac{1}{97}-\frac{1}{98}>0\)
\(\frac{1}{99}>0\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}< \frac{2}{5}\)
A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}......\frac{97}{98}.\frac{99}{100}\)
Chứng minh 1/15 < A < 1/10
ko can phai tinh ma la phan tich a vua co 1/15 vua co 1/10 thi co the so sanh ok?
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
Chứng minh 1/15 < A < 1/10
mk cm vế sau, vế đầu tương tự nha:
ta có:
1/2<2/3
3/4<4/5
...
99/100<100/101
=>A^2<1/2×2/3×3/4×...×99/100×100/101
=>A^2<1/101<1/100
=>A<1/10(dpcm)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
Chứng minh 1/15 < A < 1/10
Cho \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
Chứng minh rằng 1/15 < A < 1/10
cho A=\(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{99}{100}\)
CHỨNG MINH \(\frac{1}{15}< a< \frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100}\)
Chứng minh \(\frac{1}{15}
Áp dụng a/b<1 suy ra a/b<a+m/b+m(a,b,m thuộc N sao)
Suy ra A< 2/3.4/5.6/7...100/101
A2<1/2.2/3.3/4.4/5.5/6.6/7...99/100.100/101
A2<1/101<1/100=(1/10)2
Suy ra A<1/10<1/15
Chứng tỏ A<1/15
Cho A = \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)
Chứng minh rằng \(\frac{1}{15}< A< \frac{1}{10}\)