Có hai đường tròn (O;2cm) và (A; 2cm) cắt nhau tại C, D. Điểm A nằm trên đường tròn tâm O
a) Vẽ đường tròn tâm C bán kính 2cm
b) Vì sao đường tròn tâm C lại đi qua O và A
Không cần vẽ hình
cho hai đường tròn tâm O và O' tiếp xúc ngoài với nhau tại A, có đường kính AB của đường tròn tâm O, đường kính AC của đường tròn O', gọi MN là tiếp tuyến chung của hai đường tròn (M thuộc đường tròn O, N thuộc đường tròn O') hai tia BM và CN cắt nhau tại E. a) CM: tam giác EBC là tam giác vuông b) CM: EB.EM=EN.EC c) Tính MN biết bán kính của đường tròn (O) và (O') lần lượt là 9cm và 4cm
Cho hai đường tròn (O; 3cm) và (O'; 4cm) có OO' = 5cm
a) Hai đường tròn (O) và (O') có vị trí tương đối nào ?
b) Tính độ dài dây chung của hai đường tròn ?
a: hai đường tròn này cắt nhau
b:
Gọi A và B là giao điểm của hai đường tròn (O)
và (O’), H là giao điểm của AB và OO’.
Tam giác AOO’ vuông tại A, AH ⊥ OO’ và AB = 2AH.
Ta tính được AH = 2,4cm nên AB = 4,8cm.
Cho hai đường tròn (O; 3cm) và (O’; 4cm) có OO’ = 5cm. Hai đường tròn (O) và (O’) có vị trí tương đối nào?
Cho hai đường tròn (O) và (O') có cùng bán kính R cắt nhau tại hai điểm A, B sao cho tâm O nằm trên đường tròn (O') và tâm O' nằm trên đường tròn (O). Đường nối tâm OO' cắt AB tại H, cắt đường tròn (O') tại giao điểm thứ hai là C. Gọi F là điểm đối xứng của B qua O'.
a) Chứng minh rằng AC là tiếp tuyến của (O), và AC vuông góc BF.
b) Trên cạnh AC lấy điểm D sao cho AD = AF. Qua D kẽ đường thăng vuông góc với OC cắt OC tại K, Cắt AF tại G. Gọi E là giao điểm của AC và BF. Chứng minh các tứ giác AHO'E, ADKO là các tứ giác nội tiếp.
c) Tứ giác AHKG là hình gì? Vì sao.
d) Tính diện tích phần chung của hình (O) và hình tròn (O') theo bán kính R.
Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O’) có đường kính CB. Hai đường tròn (O) và (O’) có vị trí tương đối như thế nào đối với nhau?
Vì O, O’ và B thẳng hàng nên: O’B < OB => O’ nằm giữa O và B
Ta có: OO’ = OB - O’B
Vậy đường tròn (O’) tiếp xúc với đường tròn (O) tại B
Cho hai đường tròn (O; 2cm), (O’; 3cm), OO’ = 6cm. Hai đường tròn (O) và (O’) có vị trí tương đối như thế nào với nhau?
Vì OO’ = 6 > 2 + 3 hay OO’ > R + R’ nên hai đường tròn (O) và (O’) ở ngoài nhau.
Cho hai đường tròn (O; 3cm) và (O’; 4cm) có OO’ = 5cm. Tính độ dài dây chung của hai đường tròn.
Gọi A và B là giao điểm của hai đường tròn (O) và (O’), H là giao điểm của AB và OO’.
Tam giác AOO’ vuông tại A, AH ⏊ OO’ và AB = 2AH.
Ta tính được AH = 2,4cm nên AB = 4,8cm.
Phần tự luận
Nội dung câu hỏi 1
Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O') có đường kính CB
a) Hai đường tròn (O) và (O') có vị trí tương đối như thế nào?
a) Ta có: OO' = OB – O'B
⇒ Hai đường tròn (O) và (O') tiếp xúc trong tại B
Cho hình trụ có hai đáy là hai đường tròn (O;R) và (O';R), chiều cao bằng đường kính đáy. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O' lấy điểm B. Thể tích của khối tứ diện OO'AB có giá trị lớn nhất bằng:
Cho hai đường tròn (O; 2cm), (O’; 3cm), OO’ = 6cm. Vẽ đường tròn (O’; 1cm) rồi kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm). Tia O’A cắt đường tròn (O’; 3cm) ở B. Kẻ bán kính OC của đường tròn (O) song song với O’B, B và C thuộc cùng một nửa mặt phẳng có bờ OO’. Chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O; 2cm), (O’; 3cm).
Xét tứ giác ABCO ta có:
AB // CO (gt) (1)
Mà : AB = O’B – O’A = 3 – 1 = 2 (cm)
Suy ra: AB = OC = 2 (cm) (2)
Từ (1) và (2) suy ra: ABCO là hình bình hành
Lại có: OA ⊥ O’A (tính chất tiếp tuyến)
Suy ra: BC ⊥ OC và BC ⊥ O’B
Vậy BC là tiếp tuyến chung của hai đường tròn (O) và (O’)