a: hai đường tròn này cắt nhau
b:
Gọi A và B là giao điểm của hai đường tròn (O)
và (O’), H là giao điểm của AB và OO’.
Tam giác AOO’ vuông tại A, AH ⊥ OO’ và AB = 2AH.
Ta tính được AH = 2,4cm nên AB = 4,8cm.
a: hai đường tròn này cắt nhau
b:
Gọi A và B là giao điểm của hai đường tròn (O)
và (O’), H là giao điểm của AB và OO’.
Tam giác AOO’ vuông tại A, AH ⊥ OO’ và AB = 2AH.
Ta tính được AH = 2,4cm nên AB = 4,8cm.
Cho hai đường tròn (O; 2cm) và (O'; 3cm). OO' = 6cm
a) Hai đường tròn (O), (O') có vị trí tương đối như thế nào đối với nhau ?
b) Vẽ đường tròn (O'; 1cm) rồi kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm). Tia O'A cắt đường tròn (O';3cm) ở B. Kẻ bán kính OC của đường tròn (O) song song với O'B, B và C thuộc cùng một nửa mặt phẳng có bờ OO'. Chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O; 2cm) và (O'; 3cm)
c) Tính độ dài BC
d) Gọi I là giao điểm của BC và OO'. Tính độ dài IO ?
Cho đường tròn (O; R), điểm A nằm bên ngoài đường tròn (R < OA < 3R). Vẽ đường tròn (A; 2R)
a) Hai đường tròn (O) và (A) có vị trí tương đối như thế nào đối với nhau ?
b) Gọi B là một giao điểm của hai đường tròn trên. Vẽ đường kính BOC của đường tròn (O). Gọi D là giao điểm (khác C) của AC và đường tròn (O). Chứng minh rằng AD = DC ?
Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA
a) Hãy xác định vị trí tương đối của hai đường tròn
b) Dây AD của đường tròn lớn cắt đường tròn nhỏ ở C. Chứng minh rằng AC = CD
Cho đường tròn (O) và điểm A cố định trên đường tròn. Điểm B chuyển động trên đường tròn
a) Chứng minh rằng trung điểm M của AB chuyển động trên một đường tròn (O') ?
b) Đường tròn (O') có vị trí tương đối nào đối với đường tròn (O) ?
Cho đường tròn (O; 3cm) và đường tròn (O'; 1cm) tiếp xúc ngoài tại A. Vẽ hai bán kính OB, O'C song song với nhau thuộc cùng một nửa mặt phẳng có bờ OO'
a) Tính số đo góc BAC
b) Gọi I là giao điểm của BC và OO'. Tính độ dài OI ?
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN với M thuộc (O) và N thuộc (O'). Gọi P là điểm đối xứng với M qua OO', Q là điểm đối xứng với N qua OO'. Chứng minh rằng :
a) MNQP là hình thang cân
b) PQ là tiếp tuyến chung cả hai đường tròn (O) và (O')
c) MN + PQ = MP + NQ
1) Cho (I;2cm) (O) đường kính 8cm tiếp xúp tại C, AB là tiếp tuyến của hai đường tròn. Tính tứ giác ABOI
2) Cho (O;3cm)(I;1cm) tiếp xúp tại C tiếp tuyến chung AB của hai đường tròn cắt OI tại M. Tính MC
3) Cho (O;12cm)(O'16cm) chát nhau tại A và B sao cho OA là tiếp tuyến của đường tròn (O'). Tính dây AB
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Gọi CD là tiếp tuyến chung ngoài của hai đường tròn \(\left(C\in\left(O\right),D\in\left(O'\right)\right)\)
a) Tính số đo góc CAD
b) Tính độ dài CD biết OA = 4,5, O'A = 2cm
Cho hai đường tròn đồng tâm ( O,2cm) và (O,5cm) . Vẽ đường tròn (O', 3cm) sao cho OO' = 10cm. Kẻ tiếp tuyến O'A với (O',2cm) kéo dài OA cắt (O,5cm) tại B . Kẻ bán kính O'C song song với OB( B, C nằm trên cùng nửa mặp phẳng bờ OO')
a, Xác định vị trí tương đối của hai đường tròn (O.5cm) và (O')
b, Chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O,5cm) và (O',3cm)
c, Tính BC