Bài 4 : Tìm số nguyên a và b biết rằng :
a/7 - 1/2 = 1/b+1
Bài 1 Tìm các số tự nhiên a và b biết :
a, a - b = c và ƯCLN(a,b) = 16
b,a - b = 90 và ƯCLN(a,b) = 15
c, ab = 294 và ƯCLN (a,b) =7
Bài 2 Tìm số tự nhiên n biết rằng trong ba số 6 , 16, n bất kì số nào cũng là ước của hai số kia
Bài 3 Tìm số tự nhiên lớn nhất có 3 chữ số biết rằng chia nó cho 10 thì dư 3 chia nó cho 12 thì dư 5 chia nó cho 15 thì dư 8 và nó chia hết cho 19
Bài 4 Tìm số tự nhiên nhỏ nhất để khi chia cho 5 ; 8 ; 12 thì số dư theo thứ tự là 2 ; 6 ; 8
Bạn nào trả lời nhanh nhất đủ cả 4 bài đầy đủ lời giải mình like
bài 1 ) tìm 2 phân số có tử = 9 biết giá trị của mỗi phân số đó lớn hơn -11/13 và nhỏ hơn -11/15
bài 2) cho M = x^2 -5/x^2 -2 (x thuộc Z ). Tìm x thuộc Z để M là số nguyên
bài 3 ) cho 6 số nguyên dương a<b<c<d<m<n
chứng minh rằng a+c+m/a+b+c+d+m+n<1/2
Bài 1 :
a) Tìm số tự nhiên a lớp nhất , biết răng :
480 : a và 600 :a
b) Tìm số tự nhiên x:biết rằng 126:x ; 210:x và 15 <x<30
c)Tìm số tự nhiên y biết rằng 35:y ; 105:y và y > 5
giúp mình nhanh nha
a) 480 chia hết cho a , 600 chia hết cho a và a lớn nhất
=> a = ƯCLN(480, 600)
480 = 25 . 3 . 5
600 = 23 . 3 . 52
ƯCLN(480, 600) = 23 . 3 . 5 = 120
=> a = 120
b) 126 chia hết cho x , 210 chia hết cho x và 15 < x < 30
=> x thuộc ƯC(126, 210) và 15 < x < 30
126 = 2 . 32 . 7
210 = 2 . 3 . 5 . 7
ƯCLN(126, 210) = 2 . 3 . 7 = 42
ƯC(126,210) = Ư(42) = { 1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42 }
Vì 15 < x < 30 => x = 21
c) 35 chia hết cho y , 105 chia hết cho y và y > 5
=> y thuộc ƯC(35, 105)
35 = 5 . 7
105 = 3 . 5 . 7
ƯCLN(35, 105) = 5 . 7 = 35
ƯC(35. 105) = Ư(35) = { 1 ; 5 ; 7 ; 35 ]
Vì y > 5 => y = 7 , y = 35
Bài 3 : Tìm hai số biết rằng tổng của chúng bằng 105 và 2/7 số thứ 1 bằng 3/14 số thứ 2
TA có: 2/7=6/21
3/14=6/28
Vì 6/21 số thứ 1 bằng 6/28 số thứ 2 nên ta coi số thứ 1 là 21 phần thì số thứ 2 là 28 phần như thế
105 ứng với số phần là:21+28=49 (phần)
Số thứ 1 là: 105/49*21=45
Số thứ 2 là :105-45=60
bài 1: tìm số tự nhiên n biết rằng:
a.1+2+3+...+n=378
b. chứng minh:A=4+2^2+2^3+...+2^2015 là 1 số chính phương
c. tìm A thuộc N biết ƯCLN (a,b)=10 ; BCNN (a,b)=120
d. Tìm n thuộc Z sao cho n-7 chia hết cho 2n+3
Bạn ơi, cái câu b đấy
Minh tính đc A=22016-1.
22016=(21008)2 là chính phương. Tuiy nhiên ko tồn tại 2 số chính phương liên tiếp là 2 số tự nhiên liên tiếp. Bạn xem lại đề bài nha
Bài 1: Ba phân số tối giản có tổng bằng \(\frac{213}{70}\)các tử của chúng có tỉ lệ vs 3;4;5, các mẫu của chúng tỉ lệ vs 5;1;2.
Tìm 3 phân số đó
Bài 2: Tìm số tự nhiên n có hai chữ số biết rằng 2 số 2n+1 và 3n+1 đồng thời là số chính phương.
Bài 3: Tìm 3 số tự nhiên a;b;c biết \(\frac{3a\:-\:2b}{5}=\frac{2c\:\:-\:5a}{3}=\frac{5b\:-\:3c}{2}\)và a + b + c = -50
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
bài 2
Giải:
Gọi 2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)
10≤n≤99⇒21≤2n+1≤19910≤n≤99⇒21≤2n+1≤199
⇒21≤a2≤199⇒21≤a2≤199
Mà 2n + 1 lẻ
⇒2n+1=a2∈{25;49;81;121;169}⇒2n+1=a2∈{25;49;81;121;169}
⇒n∈{12;24;40;60;84}⇒n∈{12;24;40;60;84}
⇒3n+1∈{37;73;121;181;253}⇒3n+1∈{37;73;121;181;253}
Mà 3n + 1 là số chính phương
⇒3n+1=121⇒n=40⇒3n+1=121⇒n=40
Vậy n = 40
MỌI NGƯỜI CHỈ EM BÀI VỚI Ạ!!! EM CẢM ƠN❤
a) Tìm số tự nhiên b, biết rằng: Nếu chia 129 cho số b ta được số dư là 10 và chia 61 cho số b ta được số dư cũng là 10.
b) Tìm số tự nhiên a, biết rằng: Khi chia số a cho 14 ta được thương là 5 và số dư lớn nhất trong phép chia ấy.
\(129-10=119⋮b\)
\(61-10=51⋮b\)
=> b là ước chung của 119 và 51 => b=17
b/
Số dư lớn nhất cho 1 phép chia kém số chia 1 đơn vị
Số dư trong phép chia này là
14-1=13
\(\Rightarrow a=14.5+13=83\)
a) gọi số chia cần tìm là b ( b > 10)
Gọi q1 là thương của phép chia 129 cho b
Vì 129 chia cho b dư 10 nên ta có:129 = b.q1 + 10 ⇒ b.q1 =119 = 119.1 =17.7
Gọi q2 là thương của phép chia 61 chia cho cho b
Do chia 61 cho b dư 10 nên ta có 61 = b.q2 +10⇒ b.q2 = 51 = 1.51 = 17.3
Vì b < 10 và q1 ≠ q2 nên ta dược b = 17
Vậy số chia thỏa mãn bài toán là 17.
Bài 1:Tìm số nguyên tố, biết rằng số đó bằng tổng của 2 số nguyên tố và bằng hiệu của 2 số nguyên tố.
Bài 2: CHo ba số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước d đơn vi. Chứng minh rằng d chia hết cho 6.
bài 1 : tìm hai số có hiệu bằng 3608, biết rằng nếu lấy số bị trừ cộng số trừ hiệu của chúng lại thì được 8252 ?
bài 2 : hiệu của hau số bằng 240 . nếu ta bớt ở mỗi số 15 đơn vị thì số lớn gấp 6 lần số bé . tìm hai số đó ?
bài 3 : tìm hai số co hiệu bằng 1614, biết rằng nếu giữ nguyên số trừ và gấp số bị trừ lên 4 lần thì được hiệu mới bằng 9033
bn nào nhanh tay mik tick cho nha !
Bạn Huỳnh Phan Yến Như toàn trả lời linh tinh mà cũng được tick
câu 1:4126 và 518
câu 2:63 và 303
câu 3:2473 và 859