Cho A = 1/2+3/2+(3/2)^2+................+(3/2)^2012; B=(3/2)^2013:2
Tính A - B
Cho A=1/2+3/2+(3/2)2+(3/2)4+........+(3/2)2012 và B=(3/2)2012:2
Tính B-A
Bạn kiểm tra lại đề nhé, hình như đề hơi có vấn đề
cho A=( 1/2+1/3+1/4+...+1/2013) / ( 2012+2012/2+2011/3+...+1/2013). Tim A
cho A=1/2+3/2+(3/2)^2+.....+(3/2)^2012, B=(3/2)^2013:2. tính B-A
\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)
\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right)\)
\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)
\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)
Cho A=1/2+3/2+(3/2)^2+(3/2)^3+...+(3/2)^2012 và B=(3/2)^2013 / 2
cho a 1+ 3+3^2+3^3+3^4+..........3^2012
b = 3^2012:2
tinh a-b
Cho A=1/2+3/2+3/2^2+(3/2)^2+(3/2)^3+...+(3/2)^2012 và B=(3/2)^2013:2
Tính B-A.
a)2^x+2^x+1+2^x+2+2^x+3=480
b)(1/2+1/3+...+1/2012+1/2013)*x=2012/1+2011/2+2010/3+..+2/2011+1/2012
1.
a) Cho A = \(1+3+3^2+3^3+3^4+...+3^{2012}\)
và B = \(3^{2012}:2\)
Tính B - A
b) Tìm hai số nguyên tố x và y sao cho :
\(x^2-6y^2=1\)
c) Cho B = \(\left(1.2.3....2012\right).\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)
CMR: B chia hết cho 2013
c) Cho B = (1.2.3....2012) . ( 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\) ) Chứng minh B chia hết cho 2013
B = (1.2.3....2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ...+ \(\dfrac{1}{2012}\) )
=(1.2.3...671...2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))
=(1.2.(3.671)...2012) . (1 + \(\dfrac{1}{2}\) +\(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))
=(1.2.2013...2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))
Vậy B chia hết cho 2013
Đúng đấy, bạn cứ chép vào đi
Cho A=1/2+3/2+(3/2)^2+...+(3/2)^2012 và B=(3/2)2013 :2.Tính A-B
Lời giải:
Ta có:
\(A-\frac{1}{2}=\frac{3}{2}+(\frac{3}{2})^2+...+(\frac{3}{2})^{2012}\)
\(\frac{3}{2}(A-\frac{1}{2})=(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2013}\\ \Rightarrow \frac{3}{2}(A-\frac{1}{2})-(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}\)
$\Rightarrow \frac{1}{2}(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$
$A-\frac{1}{2}=2(\frac{3}{2})^{2013}-3$
$A=2(\frac{3}{2})^{2013}-2,5$
$\Rightarrow A-B=2(\frac{3}{2})^{2013}-2,5-(\frac{3}{2})^{2013}:2$
$=\frac{3}{2}(\frac{3}{2})^{2013}-2,5=(\frac{3}{2})^{2014}-2,5$