сho (x ^ 2)/(x + y) + (y ^ 2)/(y + z) + (z ^ 2)/(z+ x) = 2000 tính (y ^ 2)/(x + y) + (z ^ 2)/(y + z) + (x ^ 2)/(z+ x)
сho (x ^ 2)/(x + y) + (y ^ 2)/(y + z) + (z ^ 2)/(z+ x) = 2000 tính (y ^ 2)/(x + y) + (z ^ 2)/(y + z) + (x ^ 2)/(z+ x)
cho P=x^2/(x+y)+y^2/(y+z)+z^2/(x+z)=1999/2000 tính Q=2y^2/(x+y)+2z^2/(y+z)+2x^2/(x+z)
Cho 1/x+y +1/y+z +1/z+x=0 Tính P=(y+z)(z+x)/(x+y)^2 + (x+y)(z+x)/(y+z)^2+ (y+z)(x+y)/(z+x)^2
Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)
Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)
\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)
\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\))
\(=3\)
Vậy P=3
x/(y+z) +y/(x+z)+z/(x+y)=1
Tính x^2(y+z)+y^2/(x+z)+z^2/(x+y)
cho x:(y+z)+y:(x+z)+z:(x+y)=1.Tính M =2019+x^2:(y+z)+y^2:(x+z)+z^2:(x+y)
Tính: x^2/[(x-y)(x-z)]+y^2/[(y-x)(y-z)]+z^2/[(z-x)(z-y)]
Tính: x^2/[(x-y)(x-z)]+y^2/[(y-x)(y-z)]+z^2/[(z-x)(z-y)]
cho x/y-z + y/z-x + z/x-y =0,tính Q=x/(x-2)^2 + y/(z-x)^2 + z/(x-y)^2
Sửa đề cho x/y-z + y/z-x + z/x-y =0,tính Q=x/(y-z)^2 + y/(z-x)^2 + z/(x-y)^2
Ta có: \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\Rightarrow\frac{x}{y-z}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right)\)
\(\Rightarrow\frac{x}{y-z}=\frac{y}{x-z}+\frac{z}{y-x}=\frac{y^2-xy+xz-z^2}{\left(x-y\right)\left(z-x\right)}\)
\(\Rightarrow\frac{x}{\left(y-z\right)^2}=\frac{y^2-xy+xz-z^2}{\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
Tương tự ta có: \(\frac{y}{\left(z-x\right)^2}=\frac{z^2-yz+yx-x^2}{\left(y-z\right)\left(z-x\right)\left(x-y\right)};\frac{z}{\left(x-y\right)^2}=\frac{x^2-zx+zy-y^2}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\)
Cộng ba đẳng thức trên vế theo vế, ta được:
\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=\frac{y^2-xy+xz-z^2+z^2-yz+yx-x^2+x^2-zx+zy-y^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
Vậy Q = 0
Cho x;y;z khác 0 và x+y khác z và y+z khác x thỏa mãn:
\(\dfrac{x^2+y^2-z^2}{2xy}-\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}=1\)
Tính P = x + y + z
Đẳng thức đã cho tương đương với:
\(\dfrac{x^2z+y^2z-z^3+y^2x+z^2x-x^3+z^2y+x^2y-y^3}{2yxz}=1\)
\(\Leftrightarrow x^3+y^3+z^3+2xyz-x^2y-y^2z-z^2x-xy^2-yz^2-zx^2=0\)
\(\Leftrightarrow\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)=0\Leftrightarrow z+x=y\) (Do x + y khác z và y + z khác x).
Từ đó P = 2y (Biểu thức của P phụ thuộc vào biến y).
Vậy từ giả thiết đó bạn có thể CMR P=0 đc k
Giúp mk ba mk đg cần gấp