сho (x ^ 2)/(x + y) + (y ^ 2)/(y + z) + (z ^ 2)/(z+ x) = 2000 tính (y ^ 2)/(x + y) + (z ^ 2)/(y + z) + (x ^ 2)/(z+ x)
cho P=x^2/(x+y)+y^2/(y+z)+z^2/(x+z)=1999/2000 tính Q=2y^2/(x+y)+2z^2/(y+z)+2x^2/(x+z)
Cho 1/x+y +1/y+z +1/z+x=0 Tính P=(y+z)(z+x)/(x+y)^2 + (x+y)(z+x)/(y+z)^2+ (y+z)(x+y)/(z+x)^2
x/(y+z) +y/(x+z)+z/(x+y)=1
Tính x^2(y+z)+y^2/(x+z)+z^2/(x+y)
cho x:(y+z)+y:(x+z)+z:(x+y)=1.Tính M =2019+x^2:(y+z)+y^2:(x+z)+z^2:(x+y)
Tính: x^2/[(x-y)(x-z)]+y^2/[(y-x)(y-z)]+z^2/[(z-x)(z-y)]
cho x/y-z + y/z-x + z/x-y =0,tính Q=x/(x-2)^2 + y/(z-x)^2 + z/(x-y)^2
Cho x/(y+z)+y/(z+x)+z/(x+y)=1. Tính giá trị bt N=x^2/(y+z)+y^2/(z+x)+z^2/(x+y)
Cho x,y,z thỏa mãn đk x/(y+z)+y/(x+z)+z/(x+y)=1
Tính giá trị của S=x^2/(y+z)+y^2/(x+z)+z^2/(x+y)