Tính (1-1/2) (1-1/3) (1-1/4) ... (1-1/1999) (1-1/2000)
tính
(1/2+1/3+1/4+...+1/2000)/(1999/1+1998/2+1997/3+...1/1999)
tính hợp lý : ( 1/2 + 1/3 + 1/4 +...+ 1/2000) / (1999/1 + 1998/2 + ... + 1/1999) các bro giúp mình , mình sẽ tick ạ
Ta có Đặt B = \(\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}\)(1999 số hạng)
\(=\left(1+1+1+...+1\right)+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}\)(1999 số hạng 1)
\(=1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+...+\left(\frac{1}{1999}+1\right)\)(1998 cặp số)
= \(\frac{2000}{2}+\frac{2000}{3}+...+\frac{2000}{1999}+\frac{2000}{2000}\)
= \(2000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1999}+\frac{1}{2000}\right)\)
Khi đó \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}=\frac{1}{2000}\)
tính nhanh 1*2+2*3+3*4+.....+1999*2000
áp dụng kết quả phần a tính nhanh 1*1+2*2+3*3+...+1999*1999
=2666666000
Có công thức như sau
1x2+2x3+3x4+...+nx(n+1)=nx(n+1)x(n+2):3
1/2 + 1/3 + 1/4 + ... + 1/2000 / 1999/1 + 1998/2 + 1997/3 +...+ 1999/1
Cho A= 2000/1 +1999/2 + 1998/3 +.... +1/2000 +2000
B= 1+ 1/2 +1/3 +1/4+..... +1/2000
Tính A/B
Các bn giúp mình với nha mình đang cần gấp. Cảm ơn ạ
Cho A= 2000/1 +1999/2 + 1998/3 +.... +1/2000 +2000
B= 1+ 1/2 +1/3 +1/4+..... +1/2000
Tính A/B
Các bn giúp mình với nha mình đang cần gấp. Cảm ơn ạ
Ta có:
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=2001\)
A= 2000/1+ 1999/2 + 1998/3 + ... + 1/2000 + 2000 và B= 1/1 +1/2 + 1/3 + ... 1/2000
Tính A.B
Tính \(E=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}}\)
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
Tính nhanh:\(\frac{1^2+1}{2^2+1}+\frac{1^2-1}{2^2-1}-\frac{2^2+1}{3^2+1}+\frac{2^2-1}{3^2-1}+...-\frac{1999^2+1}{2000^2+1}+\frac{1999^2-1}{2000^2-1}\)