Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Baophuong Hoang
Xem chi tiết
Nguyễn Quốc Cường
Xem chi tiết
Nguyễn Việt Bách
Xem chi tiết
Trần Việt Hùng
8 tháng 1 lúc 21:10

pip install pygame

 

phạm thị hà phương
Xem chi tiết
o0o nhật kiếm o0o
30 tháng 3 2019 lúc 21:22

Gợi ý : CM : a < m < b

Với m , b là 2 số liêm tiếp

o0o nhật kiếm o0o
30 tháng 3 2019 lúc 21:22

nhầm : m,b sai nha là a,b

o0o nhật kiếm o0o
30 tháng 3 2019 lúc 21:30

Nhận xét : 

\(\frac{a}{a+b}>\frac{a}{a+b+c}\left(1\right)\)

\(\frac{b}{b+c}>\frac{b}{b+c+a}\left(2\right)\)

\(\frac{c}{c+a}>\frac{c}{c+a+b}\left(3\right)\)

Cộng (1) , (2) với (3) ta được : 

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=1\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1\)

Nhận xét 2 : 

\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\left(4\right)\)

\(\frac{b}{b+c}< \frac{b+a}{b+c+a}\left(5\right)\)

\(\frac{c}{c+a}< \frac{c+b}{c+a+b}\left(6\right)\)

Cộng (4) , (5) với (6) ta được :

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+a}+\frac{c+b}{c+a+b}=2\)

Vì \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

=> \(m=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên 

Nam Dinh Hai
Xem chi tiết
Lê Thế Tài
Xem chi tiết
Chibi
5 tháng 4 2017 lúc 16:17

A = \(\frac{2016-b-c}{2016}\)- c +\(\frac{2016-a-c}{2016}\)- a + \(\frac{2016-a-b}{2016}\) - b

= 3 - \(\frac{2\left(a+b+c\right)}{2016}\)- (a + b + c)

= 3 - 2 - 2016 = -2015

Nó là số nguyên mà bạn.

Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 9:53

\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)

huu phuc
Xem chi tiết
Nguyễn Minh Quang
18 tháng 3 2022 lúc 15:34

ta có bất đẳng thức sau : 

\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)

tương tự ta sẽ có 

\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên

Khách vãng lai đã xóa
BiBo MoMo
Xem chi tiết