Cho a,b,c là các số nguyên dương.Chứng tỏ biểu thức sau không thể có giá trị là số nguyên: A= a/a+b + b/b+c + c/c+a
Cho a,b,c là các số nguyên dương.Chứng tỏ biểu thức sau không thể có giá trị là số nguyên:
A= a/a+b + b/b+c + c/c+a
Với a,b,c,d là các số nguyên dương.Chứng tỏ biểu thức A không là số nguyên
\(A=\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}\)
cho các số nguyên dương a;b;c thoả mãn a+b+c=2017. CMR giá trị biểu thức sau không là 1 số nguyên \(A=\dfrac{a}{2017-c}+\dfrac{b}{2017-a}+\dfrac{c}{2017-b}\)
1.\(cho\)a,b,c là các số nguyên dương.chứng tỏ rằng :
\(m=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là một số nguyên
Gợi ý : CM : a < m < b
Với m , b là 2 số liêm tiếp
Nhận xét :
\(\frac{a}{a+b}>\frac{a}{a+b+c}\left(1\right)\)
\(\frac{b}{b+c}>\frac{b}{b+c+a}\left(2\right)\)
\(\frac{c}{c+a}>\frac{c}{c+a+b}\left(3\right)\)
Cộng (1) , (2) với (3) ta được :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=1\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1\)
Nhận xét 2 :
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\left(4\right)\)
\(\frac{b}{b+c}< \frac{b+a}{b+c+a}\left(5\right)\)
\(\frac{c}{c+a}< \frac{c+b}{c+a+b}\left(6\right)\)
Cộng (4) , (5) với (6) ta được :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+a}+\frac{c+b}{c+a+b}=2\)
Vì \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
=> \(m=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên
Cho các số nguyên dương a,b,c thỏa mãn: a+b+c=2016
CMR: giá trị biểu thức sau không phải là một số nguyên:
A=a:(2016-c)+b:(2016-a)+c:(2016-b)
Cho các số nguyên dương a; b; c thỏa mãn a+ b+ c= 2016
Chứng minh rằng giá trị biểu thức sau không phải là một số nguyên
A= a/2016- c +b/2016- a +c/2016- b
A = \(\frac{2016-b-c}{2016}\)- c +\(\frac{2016-a-c}{2016}\)- a + \(\frac{2016-a-b}{2016}\) - b
= 3 - \(\frac{2\left(a+b+c\right)}{2016}\)- (a + b + c)
= 3 - 2 - 2016 = -2015
Nó là số nguyên mà bạn.
cho các số nguyên dương a, b, c thỏa mãn a+b+c=2016.
Chứng minh rằng giá trị biểu thức sau không phải là một số nguyên
A = \(\dfrac{a}{2016-c}+\dfrac{b}{2016-a}+\dfrac{c}{2016-b}\)
\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)
Cho A=a+b/a+b+c + b+c/b+c+d + c+d/c+d+a + d+a/d+a+b ( với a;b;c;d là các số nguyên dương ) . Chứng tỏ biểu thức A không là số nguyên
ta có bất đẳng thức sau :
\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
tương tự ta sẽ có
\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên
cho a,b,c là các số nguyên khác nhau đôi 1. chứng minh biểu thức trên có giá trị là 1 số nguyên : P= a^3/(a-b)(a-c)+b^3/(b-a)(b-c)+c^3/(c-a)(c-b)