Tìm giá trị nhỏ nhất của biểu thức A biết:
A=\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
b, ta có : \(x+y=1=>2x+2y=2\)
\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)
\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)
=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)
Cho x,y là hai số dương biết x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
Áp dụng BĐT AM-GM ta có:
\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}=\frac{1}{x^2+y^2}+\frac{2}{4xy}+\frac{1}{4xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{1}{4xy}\)
\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{1}{4\cdot\frac{1}{4}}=4+1=5\)
Xảy ra khi \(x=y=\frac{1}{2}\)
cho các số dương x và y thoả mãn \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\) .Tìm giá trị nhỏ nhất của biểu thức A=xy+2017
\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)
\(\Leftrightarrow xy\ge4\)
\(\Rightarrow A=xy+2017\ge4+2017=2021\)
Tìm giá trị nhỏ nhất của biểu thức sau:\(\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\)
tìm giá trị nhỏ nhất của biểu thức:
\(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
Lời giải phía trên sai rồi. Biểu thức (mình đặt là A) sẽ bằng \(\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Ta biển đổi \(A=\frac{1}{4}.\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}+\frac{3}{4}.\frac{x^2+y^2}{xy}\)
Thực hiện BĐT Cauchy 2 lượng đầu, lượng cuối cùng dùng BĐT \(x^2+y^2\ge2xy\)
Vậy giá trị nhỏ nhất là \(\frac{5}{2}\)
Bài này thiếu điều kiện x,y > 0. Nếu có điều kiện thì quy đồng \(\frac{x}{y}+\frac{y}{x}=\frac{x^2+y^2}{xy}\) rồi áp dụng bất đẳng thức Cô-si được A \(\ge\)2
cho x và y là hai số dương có tổng bằng 1
tìm giá trị nhỏ nhất của biểu thức:
\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
Ta có: \(1=x+y\ge2\sqrt{xy}\)
\(\Rightarrow4xy\le1\)
\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{1}=\frac{4}{\left(x+y\right)^2}+1=\frac{4}{1}+1=5\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Áp dụng BĐT AM - MG ta có :
\(xy\)\(\le\)\(\frac{\left(x+y\right)^2}{4}\)\(=\)\(\frac{1}{4}\)
Áp dụng BĐT Cauchy - Schwarz dạng Engel :
\(S\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{3}{4xy}\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{2}{4xy}\)\(-\)\(\frac{1}{4xy}\)
\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{1}{2xy}\)\(-\)\(\frac{1}{4xy}\)\(\ge\)\(\frac{\left(1-1\right)^2}{x^2-y^2-2xy}\)\(-\)\(\frac{1}{4xy}\)
\(\ge\)\(\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)\(-\)\(\frac{1}{4.\frac{1}{4}}\)\(=\)\(4\)\(-\)\(1\)\(=\)\(5\)
Xảy ra khi \(x\)\(=\)\(y\)\(=\)\(\frac{1}{2}\)
Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???
Tìm giá trị nhỏ nhất của biểu thức sau, biết x và y ;à các số thực dương :
\(A=\frac{\left(x+y+1\right)^2}{xy+x+y}+\frac{xy+x+y}{\left(x+y+1\right)^2}\)
dự đoán của chúa Pain x=y=1
áp dụng BDT cô si ta có
\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)
dấu = xảy ra khi
\(\left(x+y+1\right)^2=xy+x+y\) :)
Cho x, ,y là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\)