cho B=\(1+11^1+11^2+11^3+.....+11^9\) chứng minh B chia hết cho 5
A=119+118+117+...+11+1
Chứng minh A chia hết cho 5
B=2+22+23+...+260
Chứng minh B chia hết cho 3;5;15
Cho A= 11 mũ 9 + 11 mũ 8 +............+ 11+1 Chứng minh rằng A chia hết cho 5
cho B=2+2 mũ 2 + 2 mũ 3 +.................+ 2 mũ 20 chứng minh rằng B chia hết cho 5
Giúp mình với
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
A=(1+11+11.1
thôi cậu tự làm dễ mà
Bài 1: Cho A=119+118+117+...+11+1 Chứng minh A chia hết cho 5
Bài 2 :
a) Cho A=2+22+23+...+260 Chứng minh A chia hết cho 3 ; 7 và 15
b) Cho B=3+33+35+...+31991 Chứng minh B chia hết cho 13 và 41
1/ Chứng minh A chia hết cho 15
2/ Cho B = 3 + 33 + 35 +....+31991
Chứng minh B chia hết cho 13 và B chia hết cho 41
3/ A = 119 + 118+ .... + 11 + 1
Chứng minh A chia hết cho 5
4/ Chứng minh:
a. 1088 + 8 chia hết cho 2
b. 88 + 220 chia hết cho 17
CHỨNG MINH RẰNG
A = 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 60 chia hết cho 3,7,15
B= 3 +3 mũ 3 + 3 mũ 5 +.........+3 mũ 1991 chia hết cho 13 , 41
D= 11 mũ 9 + 11 mũ 8 + 11 mũ 7 +.........+11 +1 chia hết cho 5
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
Bài 1: Cho A = 2 + 22 + 23 +...+ 260. Chứng minh A chia hết cho 3 và cho 7
Bài 2: a.Cho B = 3 + 33 + 35 +...+ 31991. Chứng minh B chia hết cho 13 và 41
b. Cho C = 119 + 118 + 117 +...+ 11 +1. Chứng minh A chia hết cho 5
bai1
(2+22)+(23+24)+...+(259+260)
=(2+22+23)+...+(258+259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=3.2+3.23+3.59chia hết cho 3 vì có số 3
=2.(1+2+22)+...+258.(1+2+23)
A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7
Ai đó giải hộ mình phần b bài 2 với!!!!! Còn mỗi phần đấy là mình ngồi cắn bút...
Bài 1: Cho A = 2 + 22 + 23 +...+ 260. Chứng minh A chia hết cho 3 và cho 7
Bài 2: a.Cho B = 3 + 33 + 35 +...+ 31991. Chứng minh B chia hết cho 13 và 41
b. Cho C = 119 + 118 + 117 +...+ 11 +1. Chứng minh A chia hết cho 5
bai1
(2+22)+(23+24)+...+(259+260)
=(2+22+23)+...+(258+259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=3.2+3.23+3.59chia hết cho 3 vì có số 3
=2.(1+2+22)+...+258.(1+2+23)
A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7
bai 2 :
mình cũng cắn bút giống bạn
Cho A = 119+118+..................11+1 hãy chứng tỏ A chia hết cho 5
cho B = 2+ 22+23 + ....,..............+220 hãy chứng minh B chia hết cho 5
Cho A = 11^9+11^8+11^7+....+11+1.
a, Chứng minh rằng A chia hết cho 5
b, Chứng mình rằng với mọi số tự nhiên n thì n^2+n+1 ko chia hết cho 4
A = 11^9 + 11^8 + ... + 11 + 1
=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11
11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)
10A = 11^10 - 1
A = (11^10 - 1 ) : 10
vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .
. Vậy A chia hết cho 5
hok tốt
Cho B = 1 + 111 + 112 +113 + .... + 1199
Chứng minh rằng B chia hết cho 5
B=1+11+112+...+1199
=(1+11+112+113+114)+(115+116+117+118+119)+...+(1195+1196+1197+1198+1199)
=1(1+11+112+113+114)+115(1+11+112+113+114)+...+1195(1+11+112++113+114)
=1.16105+115.16105+...+1195.16105 chia hết cho 5
Vậy B chia hết cho 5.
Học tốt!
Ta có : B =1+11^1+11^2+11^3+...+11^99 =>11B=11+11^2+11^3+11^4+...+11^100 =>10B=(11+11^2+11^3+11^4+...+11^100)-(1+11^1+11^2+11^3+...+11^99) =>10B=11^100-1 mà 11 mũ 100 có tận cùng =1 nên 11 mũ 100 -1 có tận cùng =0 nên chia hết cho 5. =>B =(11^100-1):10 cũng có tận cùng bằng 0 nên cũng chia hết cho 5. Vậy B chia hết cho 5. (lưu ý: ^ là mũ)