\(\frac{\frac{20}{200}}{2000}\)
BẠN HS A RÚT GỌN THÀNH 200; BẠN HỌC SINH B RÚT GỌN THÀNH \(\frac{1}{20000}\)
BẠN NÀO ĐÚNG BẠN NÀO SAI TẠI SAO?
MK ĐANG CẦN GẤP
Rút gọn:
\(A=\frac{200+\frac{199}{2}+\frac{198}{3}+...+\frac{2}{199}+\frac{1}{200}}{\frac{100}{2}+\frac{100}{3}+...+\frac{100}{200}+\frac{100}{201}}\)
20 phần 200 phần 2000
Học sinh A rút gọn bằng 200
Học sinh B rút gọn bằng 1 phần 20000
Hỏi ai đúng ? Tại sao?
Học sinh B đúng vì 20 phần 200 phần 2000 là 20 phần 200 chia 2000 bằng 1 phần 10 chia 2000 bằng 1 phần 20000
sai het
ko ai đúng vì 20 phần 200 phần 2000 là 1 hỗn số nên nó =201 phần 10
Bài 1
a rút gọn B=\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
b Chứng minh A=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{5}{8}\)
B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)= \(\frac{1}{20}\)
vậy B= \(\frac{1}{20}\)
b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8
Vậy A>5/8
Nhớ k mik nha!!!!!!!!!!!!!
a/ Quy đồng mẫu số trong các ngoặc đơn, chúng sẽ giản ước được :\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}=\frac{1}{20}.\)
b/ Chứng minh A> 5/8
\(A=(\frac{1}{101}+...\frac{1}{125})+(\frac{1}{126}+...+\frac{1}{150})+(\frac{1}{151}+...+\frac{1}{175})+\left(\frac{1}{176}+...+\frac{1}{200}\right)\ge.\)
\(\ge\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{6}+\frac{1}{8}\right)=\frac{12}{35}+\frac{7}{24}>\frac{24}{72}+\frac{21}{72}=\frac{45}{72}=\frac{5}{8}\)
Rút gọn biểu thức sau
B = 1 + \(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{200}{2^{200}}\)
Rút gọn phân số sau:\(\frac{200}{125}\)
Ta có :
\(\frac{200}{125}=\frac{200:25}{125:25}=\frac{8}{5}\)
Vậy phân số :
200/125 rút gọn được 8/5
Rút gọn biểu thức:
a) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}.\sqrt{2}+\frac{4}{5}.\sqrt{200}\right):\frac{1}{8}\)
\(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right):\frac{1}{8}\)
\(=8.\left(\frac{1}{\sqrt{8}}-\frac{3}{\sqrt{2}}+8\sqrt{2}\right)\)
\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}=54\sqrt{2}\)
Rút gọn biểu thức sau :
\(A=\frac{4+\sqrt{3}}{\sqrt{1}+\sqrt{3}}+\frac{6+\sqrt{8}}{\sqrt{3}+\sqrt{5}}+...+\frac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}+....+\frac{200+\sqrt{999}}{\sqrt{99}+\sqrt{100}}\)
Với mọi \(k\ge2\) thì \(\frac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}=\frac{\left[\left(\sqrt{k-1}\right)^2+\left(\sqrt{k+1}\right)^2+\sqrt{\left(k-1\right)\left(k+1\right)}\right]\left(\sqrt{k+1}-\sqrt{k-1}\right)}{\left(\sqrt{k-1}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k-1}\right)}\)
\(=\frac{\sqrt{\left(k+1\right)^3}-\sqrt{\left(k-1\right)^3}}{2}\)
Suy ra tổng đã cho có thể viết là :
\(A=\frac{1}{2}\left[\sqrt{3^3}-\sqrt{1^3}+\sqrt{4^3}-\sqrt{2^3}+\sqrt{5^3}-\sqrt{3^3}+\sqrt{6^3}-\sqrt{4^3}+...+\sqrt{101^3}-\sqrt{99^3}\right]\)
\(=\frac{1}{2}\left[-1-\sqrt{2^3}+\sqrt{101^3}+\sqrt{100^3}\right]\)
\(=\frac{999+\sqrt{101^3}-\sqrt{8}}{2}\)
So sánh: a) A=\(\frac{201-200}{201+200}\) và B=\(\frac{201^2-200^2}{201^2+200^2}\)
b) C=\(\frac{1999.4001+2000}{2000.4001-2001}\) và D=\(\frac{1501.1503-1500.1498}{6002}\)
Tính, rút gọn kết quả
\(\sqrt{\frac{1}{2}}+\sqrt{4,5}-\sqrt{12,5}-0,5\sqrt{200}+\sqrt{242}+6\sqrt{1\frac{1}{8}}-\sqrt{24,5}\)
\(\sqrt{\frac{1}{2}}+\sqrt{4,5}-\sqrt{12,5}-0,5\sqrt{200}+\sqrt{242}+6\sqrt{1\frac{1}{8}}-\sqrt{24,5}\)
\(=\frac{\sqrt{2}}{2}+\frac{3\sqrt{2}}{2}-\frac{5\sqrt{2}}{2}-5\sqrt{2}+11\sqrt{2}+\frac{9\sqrt{2}}{2}-\frac{7\sqrt{2}}{2}\)
\(=\frac{\sqrt{2}}{2}+6\sqrt{2}\)
\(=\frac{13\sqrt{2}}{2}\)