Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bá Hùng
Xem chi tiết
Nguyễn Thị Thu Huyền
31 tháng 3 2017 lúc 17:24

quen lắm

At number one
Xem chi tiết
Nguyễn Minh Ngọc
20 tháng 3 2016 lúc 9:30

Học sinh B đúng vì 20 phần 200 phần 2000 là 20 phần 200 chia 2000 bằng 1 phần 10 chia 2000 bằng 1 phần 20000

Bùng nổ Saiya
20 tháng 3 2016 lúc 9:32

sai het

ko ai đúng vì 20 phần 200 phần 2000 là 1 hỗn số nên nó =201 phần 10

Đéo nhắc lại
Xem chi tiết
Đỗ Thị Dung
6 tháng 5 2019 lúc 21:11

B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)

B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)\(\frac{1}{20}\)

vậy B= \(\frac{1}{20}\)

Kelly Ánh
6 tháng 5 2019 lúc 21:17

b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8

Vậy A>5/8

Nhớ k mik nha!!!!!!!!!!!!!

TRẦN ĐỨC VINH
6 tháng 5 2019 lúc 21:47

a/ Quy đồng mẫu số trong các ngoặc đơn, chúng sẽ giản ước được :\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}=\frac{1}{20}.\) 

b/  Chứng minh   A> 5/8  

\(A=(\frac{1}{101}+...\frac{1}{125})+(\frac{1}{126}+...+\frac{1}{150})+(\frac{1}{151}+...+\frac{1}{175})+\left(\frac{1}{176}+...+\frac{1}{200}\right)\ge.\) 

         \(\ge\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{6}+\frac{1}{8}\right)=\frac{12}{35}+\frac{7}{24}>\frac{24}{72}+\frac{21}{72}=\frac{45}{72}=\frac{5}{8}\)

Nguyễn Hà Khắc
Xem chi tiết
Ruby Kurosawa
Xem chi tiết
Ngô Bảo Ngọc
7 tháng 2 2017 lúc 21:48

\(\frac{8}{5}\) cho mk nha bn

sakura
7 tháng 2 2017 lúc 21:48

Ta có :

\(\frac{200}{125}=\frac{200:25}{125:25}=\frac{8}{5}\)

Vậy phân số :

200/125 rút gọn được 8/5

Kiu Min
7 tháng 2 2017 lúc 21:50

=8/5

k mk mk k lai

Tuấn Nguyễn
Xem chi tiết
Ngọc Châu
9 tháng 8 2018 lúc 14:07

\(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right):\frac{1}{8}\)

\(=8.\left(\frac{1}{\sqrt{8}}-\frac{3}{\sqrt{2}}+8\sqrt{2}\right)\)

\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}=54\sqrt{2}\)

Phan Thị Lê Anh
Xem chi tiết
Nguyễn Minh Nguyệt
4 tháng 5 2016 lúc 16:28

Với mọi \(k\ge2\)  thì \(\frac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}=\frac{\left[\left(\sqrt{k-1}\right)^2+\left(\sqrt{k+1}\right)^2+\sqrt{\left(k-1\right)\left(k+1\right)}\right]\left(\sqrt{k+1}-\sqrt{k-1}\right)}{\left(\sqrt{k-1}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k-1}\right)}\)

                                                \(=\frac{\sqrt{\left(k+1\right)^3}-\sqrt{\left(k-1\right)^3}}{2}\)

Suy ra tổng đã cho có thể viết là :

\(A=\frac{1}{2}\left[\sqrt{3^3}-\sqrt{1^3}+\sqrt{4^3}-\sqrt{2^3}+\sqrt{5^3}-\sqrt{3^3}+\sqrt{6^3}-\sqrt{4^3}+...+\sqrt{101^3}-\sqrt{99^3}\right]\)

    \(=\frac{1}{2}\left[-1-\sqrt{2^3}+\sqrt{101^3}+\sqrt{100^3}\right]\)

   \(=\frac{999+\sqrt{101^3}-\sqrt{8}}{2}\)

Hồ Phong Thư
Xem chi tiết
Đặng Trí Hân
5 tháng 10 2021 lúc 20:48

hello 123-145=

Khách vãng lai đã xóa
nguyen minh huyen
Xem chi tiết
Nguyễn Công Tỉnh
15 tháng 7 2019 lúc 21:58

\(\sqrt{\frac{1}{2}}+\sqrt{4,5}-\sqrt{12,5}-0,5\sqrt{200}+\sqrt{242}+6\sqrt{1\frac{1}{8}}-\sqrt{24,5}\)

\(=\frac{\sqrt{2}}{2}+\frac{3\sqrt{2}}{2}-\frac{5\sqrt{2}}{2}-5\sqrt{2}+11\sqrt{2}+\frac{9\sqrt{2}}{2}-\frac{7\sqrt{2}}{2}\)

\(=\frac{\sqrt{2}}{2}+6\sqrt{2}\)

\(=\frac{13\sqrt{2}}{2}\)