số các số tự nhiên n để 2006 +\(n^2\)là số chính phương
tìm các số tự nhiên n để số 3n+19 là số chính phương
Tìm số tự nhiên n để n + 35 và n - 4 đều là các số chính phương
tìm n để n2 +2006 là số chính phương
số chính phương là số có số mũ là 2
Bạn ơi bài này phải cho thêm điều kiện n thuộc Z
Đặt n^2+2006 = k^2 ( k thuộc N sao)
<=> -2006 = n^2-k^2 = (n-k).(n+k)
<=> n-k thuộc ước của -2006 ( vì n thuộc Z , k thuộc N sao nên n-k và n+k đểu thuộc Z)
Mà k thuộc N sao nên n-k < n+k
Từ đó, bạn tự giải bài toán nhưng nhớ kết hợp cả điều kiện n-k<n+k
Vì n2 là số chính phương
\(\Rightarrow\) n2 chia cho 4 dư 0 hoặc 1
Mà 2006 chia cho 4 dư 2
\(\Rightarrow\) n2 + 2006 chia cho 4 dư 2 hoặc 3
\(\Rightarrow\) n2 + 2006 không là số chính phương (vì số chính phương chia cho 4 dư 0 hoặc 1)
\(\Rightarrow\) Không có số n thỏa mãn đề bài.
tìm các số tự nhiên m để pt: m\(x^2+2\left(m-1\right)x+m-4=0\) có nghiệm là các số hưu tỉ( số chính phương)
- Với \(m=0\Rightarrow x=-2\) thỏa mãn
- Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)
Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương
Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ
\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)
\(\Rightarrow m=2k\left(k+1\right)\)
Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ
1.CMR với mọi số tự nhiên n thì 3^n+4 không là số chính phương.
2.Tìm n thuộc N để n^2+2n +2 là số chính phương
Giải giúp mình.Càng nhanh càng tốt nha.
Số chính phương là số bằng bình phương của một số tự nhiên.
Hỏi tổng của n số tự nhiên chẵn 2 đến 2n có thể là một số chính phương không? Vì sao?
ko ta có
2+4+6+...+2n=2.1+2.2+2.3+2.4+...+2.n=2(1+2+3+4+..+n)=2.n(n+1):2=n(n+1)
1) CMR các số sau là hợp số:
a) \(4^{20}-1\) .
b) 1000001.
2) Tìm số tự nhiên n để giá trị của biểu thức sau là số nguyên tố: \(12n^2-5n-25\) .
3) CMR: các số sau không là số chính phương
\(A=222...2224\) (có 50 chữ số 2)
\(B=444...444\) (100 chữ số 4)
4) Tìm số nguyên tố P để 4P+1 là số chính phương.
1.Cho a=n+8/2n -5 (n thuộc N*)
Tìm các giá trị của n để a là số nguyên tố.
2. Có tồn tại số tự nhiên n nào để hai phân số:
7n - 1/4 và 5n +3/12 đồng thời là các số tự nhiên.
Tìm các số tự nhiên n sao cho: \(2^8+2^{11}+2^n\)là số chính phương
Tách ntn dễ hơn này
<=> \(^{ }2^n\)=\(k^2\)- \(^{48^2}\)
Tách 2^n = 2^q . 2^p ( q, p thuộc N, p + q = n, q >p)