Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rosie
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 20:51

\(=\dfrac{5^3\cdot7\left(7-7\right)}{2021^{2022}}=0\)

Nguyễn Việt Hà
Xem chi tiết
Đoàn Đức Hà
18 tháng 3 2022 lúc 9:13

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

Khách vãng lai đã xóa
Lâm tôm
24 tháng 4 2022 lúc 14:58

Ta có: 202220212+k≤202220212 (với klà số tự nhiên bất kì) 

Ta có: 

A=202220212+1+202220212+2+...+202220212+2021

≤202220212+202220212+...+202220212=202220212.2021=20222021

Ta có: 202220212+k>202220212+2021=20222021.2022=12021với ktự nhiên, k<2021

Suy ra A=202220212+1+202220212+2+...+202220212+2021

>12021+12021+...+12021=20212021=1

Suy ra 1<A≤20222021do đó Akhông phải là số tự nhiên. 

Lâm tôm
24 tháng 4 2022 lúc 14:58

Ta có: 202220212+k≤202220212 (với klà số tự nhiên bất kì) 

Ta có: 

A=202220212+1+202220212+2+...+202220212+2021

≤202220212+202220212+...+202220212=202220212.2021=20222021

Ta có: 202220212+k>202220212+2021=20222021.2022=12021với ktự nhiên, k<2021

Suy ra A=202220212+1+202220212+2+...+202220212+2021

>12021+12021+...+12021=20212021=1

Suy ra 1<A≤20222021do đó Akhông phải là số tự nhiên. 

Nguyễn Minh Hải
Xem chi tiết
Đoàn Đức Hà
18 tháng 3 2022 lúc 9:13

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

Khách vãng lai đã xóa
NO NAME
Xem chi tiết
Ngô Hà Duyên
Xem chi tiết
Lê Tiến Hải
Xem chi tiết
Đoàn Đức Hà
18 tháng 3 2022 lúc 9:11

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

Khách vãng lai đã xóa
he lô
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2023 lúc 22:52

 \(=\dfrac{2021}{2022}\left(\dfrac{6}{17}-\dfrac{23}{17}\right)+\dfrac{2021}{2022}=\dfrac{-2021}{2022}+\dfrac{2021}{2022}=0\)

Nguyễn Đức Bảo
Xem chi tiết