10/56 + 10/140 + 10/260 + ...+ 10/1400
H = 10/56+10/140+10/260+10/1400
10/56+10/140+10/260+.....+10/1400
Rút gọn rồi tách mẫu là đ
Tính tổng:A=10/56+10/140+10/260+.........+10/1400
\(A=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(\dfrac{3A}{5}=\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\)
\(\dfrac{3A}{5}=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\)
\(\dfrac{3A}{5}=\dfrac{1}{4}-\dfrac{1}{28}=\dfrac{3}{14}\)
⇒ \(A=\dfrac{5}{14}\)
10/56+10/140+10/260+...+10/1400
\(=\frac{20}{112}+\frac{20}{280}+\frac{20}{520}+...+\frac{20}{2800}=20\left(\frac{1}{8.14}+\frac{1}{14.20}+\frac{1}{20.26}+...+\frac{1}{50.56}\right)\)
\(=20\left(\frac{1}{8}-\frac{1}{56}\right)=20.\frac{3}{28}=\frac{15}{7}\)
A=-10/56+-10/140+-10/260+...+-10/1400
tính: 10/56+10/140+10/260+...+10/1400
bài này bạn chỉ cần tách mẫu ra là làm được thôi
A=10/56+10/140+10/260+......+10/1400
A=10/56+10/140+10/260+...+10/1400
=\(\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
=\(\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
=\(\frac{5}{3}\)(\(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\))
=\(\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
=\(\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
=\(\frac{5}{3}.\frac{3}{14}\)
=\(\frac{5}{14}\)
C = 10/56 + 10/140 + 10/260 + ......... + 10/1400
\(C=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}.\frac{3}{14}=\frac{5}{14}\)
tính tổng M=\(\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+....+\dfrac{260}{1400}\)