Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen minh tung
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
....
10 tháng 7 2021 lúc 8:56

Kẻ OH vuông góc với xy suy ra OH ≤ OA . Mặt khác A nằm trong đường tròn (O;R) nên OA ≤ R

Ngưu Kim
Xem chi tiết
Gumm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2018 lúc 8:44

Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 19:40

a: Xét (O) có

MA,MN là tiếp tuyến

=>MA=MN

mà OA=ON

nên OM là đường trung trực của AN

=>OM\(\perp\)AN(1)

Xét (O) có
ΔANB nội tiếp

AB là đường kính

Do đó: ΔANB vuông tại N

=>AN\(\perp\)NB(2)

Từ (1) và (2) suy ra OM//NB

b: Xét ΔMAO vuông tại A và ΔKOB vuông tại O có

AO=OB

\(\widehat{AOM}=\widehat{OBK}\)

Do đó: ΔMAO=ΔKOB

=>MA=KO

Xét tứ giác MAOK có

MA//OK

MA=OK

Do đó: MAOK là hình bình hành

mà \(\widehat{MAO}=90^0\)

nên MAOK là hình chữ nhật

=>KM\(\perp\)xy

 

Huỳnh Trần Thảo Nguyên
Xem chi tiết
Nguyễn Ngọc Anh Minh
19 tháng 9 2018 lúc 15:14

a/ Xét tg vuông AOH và tg vuông IOK có

\(OI\perp AH;KI\perp AO\Rightarrow\widehat{KIO}=\widehat{HAO}\)

\(\Rightarrow\Delta AOH\) đồng dạng với \(\Delta IOK\)(Hai tg vuông có hai góc nhọn tương ứng bằng nhau) (1)

b/

Từ (1) \(\Rightarrow\frac{OK}{OH}=\frac{OI}{OA}\Rightarrow OH.OI=OK.OA\)

Ta có \(OA\perp BC\)(Hai tiếp tuyến xuất phát từ 1 điểm ngoài đường tròn thì đường thẳng nối điểm đó với tâm vuông góc và chia đôi dây cung tạo bởi hai tiếp điểm)

Xét tg vuông ABO có \(OB^2=OK.OA=3\) không đổi

\(\Rightarrow OH.OI\)không đổi mà OH không đổi => OI không đổi

Mà H; O cố định => I cố định => Khi A chay trên xy thì BC luôn đi qua điểm I cố định

long NKL
19 tháng 11 2018 lúc 19:43

bạn ơi ko có hingf ak

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 12 2017 lúc 3:59

TRUONG LINH ANH
Xem chi tiết
Cô Hoàng Huyền
27 tháng 10 2017 lúc 16:52

O B C K I A H

a) Xét tam giác vuông ABO có đường cao BK, áp dụng hệ thức lượng trong tam giác ta có: 

\(OB^2=OK.OA\Rightarrow5^2=OK.10\Rightarrow OK=2,5\left(cm\right)\)

b) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.

Vậy thì \(\widehat{BOA}=\widehat{COA}\)

Suy ra \(\Delta ABO=\Delta ACO\left(c-g-c\right)\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)

Vậy nên AC là tiếp tuyến của đường tròn (O).

c) Ta thấy ngay \(\Delta KOI\sim\Delta HOA\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OK}{OH}\Rightarrow OI=\frac{OK.OA}{OH}\)

Xét tam giac vuông ABO có BK là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(OK.OA=OB^2=R^2\) không đổi. Lại có OH cũng không đổi (bằng khoảng cách từ O tới đường thẳng xy)

Vậy nên \(OI=\frac{R^2}{OH}\) không đổi.

Vậy khi A di chuyển trên đường thẳng xy thì độ dài đoạn thẳng OI không đổi.