Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Như Anh
Xem chi tiết
Bùi Thiên Nhật Minh
Xem chi tiết
Mai Anh
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
13 tháng 7 2018 lúc 15:44

Ta có :

\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+.....+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{4}}+........+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\) \(=1-\dfrac{1}{\sqrt{100}}< 1\)

Vậy \(A< 1\)

Phạm Nguyễn Tiến Đạt
Xem chi tiết
Vuquangminh2611
4 tháng 10 2022 lúc 20:58

ai bt tự làm

 

ĐỊT CON MẸ MÀY
15 tháng 4 2023 lúc 15:33

ngu tự chịu

Kai kai kai
14 tháng 10 2024 lúc 5:54

Triệt tiêu hết mấy số kia rồi á bạn

ho thi anh thu
Xem chi tiết
Hậu DZ
28 tháng 7 2018 lúc 9:14

a, S= 1/1*2 + 1/2*3 + 1/3*4 +...+1/99*100
    S= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
    S= 1/1 - 1/100
    S= 100/100 - 1/100
    S= 99/100

b, S= 1/1*3 + 1/3*5 + 1/5*7 +...+1/99*101
    S= 1/2* (2/1*3 + 2/3*5 + 2/5*7 +...+ 2/99*101)
    S= 1/2* (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/99 - 1/101)
    S= 1/2* (1/1 - 1/101)
    S= 1/2* (101/101 - 1/101)
    S= 1/2* 100/101
    S= 50/101
Chúc bạn học tốt nha

Huỳnh Bá Tuân
Xem chi tiết

Ta có: \(S=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots-\frac{100}{3^{100}}\)

=>\(3A=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots-\frac{100}{3^{99}}\)

=>\(3A+A=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots-\frac{100}{3^{99}}+\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots-\frac{100}{3^{100}}\)

=>\(4A=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(B=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}\)

=>\(3B=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}\)

=>\(3B+B=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}=-1-\frac{1}{3^{99}}=\frac{-3^{99}-1}{3^{99}}\)

=>\(4B=\frac{-3^{99}-1}{3^{99}}\)

=>\(B=\frac{-3^{99}-1}{4\cdot3^{99}}\)

Ta có: \(4A=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(=1+\frac{-3^{99}-1}{4\cdot3^{99}}-\frac{100}{3^{100}}=1+\frac{-3^{100}-3-400}{4\cdot3^{100}}=1-\frac14-\frac{403}{4\cdot3^{100}}<\frac34\)

=>\(A<\frac{3}{16}\)

\(\frac{3}{16}<\frac{3.2}{16}=\frac15\)

nên \(A<\frac15\)

Phạm Nguyễn Tiến Đạt
Xem chi tiết
Nguyễn Quỳnh Anhh
Xem chi tiết
Nguyễn Huy Tú
17 tháng 7 2021 lúc 16:28

undefined

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:07

Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

Nguyễn Dương Tùng Duy
Xem chi tiết