Tính:1+1+1+2=
Tính √2 - 1. √2 + 1 Tính B = ---------- + ----------- √3 + 1. √3 - 1 ----------- + √3 + 1
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Câu 1: tính tổng s:=1+2+3..+n
Câu 2: Tính tổng s:=1+1/2+1/3+…+1/n
không dùng máy tính hãy tính
A=1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+20
Ko dùng máy tính, hãy tính :
1/1+2 +1/1+2+3 +1/1+2+3+4 +...+1/1+2+3+...+20
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+20}\)
\(=\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{20\times21}\)
\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{20\times21}\right)\)
\(=2\times\left(\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{21-20}{20\times21}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{21}\right)\)
\(=\frac{19}{21}\)
1^2/1x2x2^2/2x3x4^2/3x5............20^2/19x21 đề bài là tính tích
Bài 2 : Tính tích A = ( 1- 1/1+2)(1-1/1+2+3)(1-1/1+2+3+4).........(1-1/1+2+........+2020)
B = (1/2-1/3)(1/2-1/5)(1/2-1/7).......(1/2-1/99)
Tính B=1+1/2*(1+2)+1/3*(1+2+3)+1/4*(1+2+3+4)+........+1/20*(1+2+3+...+20)
tính dùm mình nha thanks trước
Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n)
Do đó
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20)
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20)
=1+3/2 +4/2 +5/2 +... +21/2
=(2+3+4+5+...+20)/2=104,5 . TICH CHON MINH NHA CAC BAN THI CA NAM SE GAP NHIEU DIEU MAY MAN DAY
Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n)
Do đó
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20)
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20)
=1+3/2 +4/2 +5/2 +... +21/2
=(2+3+4+5+...+20)/2=104,5
Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n)
Do đó
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20)
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20)
=1+3/2 +4/2 +5/2 +... +21/2
=(2+3+4+5+...+20)/2=104,5
uses crt;
var a,m,i:integer;
s:real;
begin
clrscr;
write('Nhap a='); readln(a);
write('Nhap m='); readln(m);
s:=1;
for i:=1 to m do
s:=s+1/sqr(a+i);
writeln(s:4:2);
readln;
end.
a, tính
C=(1/4-1)*(1/4-1)*(1/9-1)*(1/16-1)*...*(1/81-1)*(1/100-1)
Từ đó tính P=(1/2^2-1*(1/3^2-1)*...(1/20^2-1)
b ) tính M=(-1\(\frac{1}{2}\)) *(-1\(\frac{1}{3}\))*...*(-1\(\frac{1}{2014}\))
tính nhanh
1/2+1/4+1/8+...+1/148+1/256.
tính bằng cách thuận tiện nhất
1/3+1/6+1/12+...+1/192+1/384.
tính bằng cách hợp lý
2/1*3+2/5*7+...+2/101*99
1) Tính \(S=-1+\dfrac{1}{10}-\dfrac{1}{10^2}+...+\dfrac{\left(-1\right)^n}{10^{n-1}}\)
2) Tính \(S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
1:
\(S=-\left(1-\dfrac{1}{10}+\dfrac{1}{10^2}-...-\dfrac{1}{10^{n-1}}\right)\)
\(=-\left[\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\right]\)
\(u_1=\left(-\dfrac{1}{10}\right)^0;q=-\dfrac{1}{10}\)
\(\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\)
\(=\dfrac{\left(-\dfrac{1}{10}\right)^0\left(1-\left(-\dfrac{1}{10}\right)^{n-1}\right)}{-\dfrac{1}{10}-1}\)
\(=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{-\dfrac{11}{10}}\)
=>\(S=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{\dfrac{11}{10}}\)
2:
\(S=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^{n-1}\)
\(u_1=1;q=\dfrac{1}{3}\)
\(S_{n-1}=\dfrac{1\cdot\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)}{1-\dfrac{1}{3}}\)
\(=\dfrac{3}{2}\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)\)
\(1,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{10}:\left(-1\right)=-\dfrac{1}{10}\\u_1=-1\end{matrix}\right.\)
Vậy \(S=-1+\dfrac{1}{10}-\dfrac{1}{10^2}+...+\dfrac{\left(-1\right)^n}{10^{n-1}}=\dfrac{-1}{1-\left(-\dfrac{1}{10}\right)}=-\dfrac{10}{11}\)
\(2,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{3}\\u_1=1\end{matrix}\right.\)
Vậy \(S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}=\dfrac{1}{1-\dfrac{1}{3}}=\dfrac{3}{2}\)