Chứng minh rằng \(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+....+\frac{1}{2013^3}<\frac{1}{40}\)
Chứng minh rằng: \(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2013^3}< \frac{1}{40}\)
Chứng minh rằng \(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+....+\frac{1}{2013^3}<\frac{1}{40}\)giúp với
giúp đi nếu ko giúp đc là mình ko còn đc ở trong đội tuyển toán
violympic tính điểm sao bang bai toan noi doi k nguong à
violympic lam gi co chung minh !con dien
\(M=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)
Chứng minh rằng \(M< \frac{1}{3}\)
\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)
\(5M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
\(\Rightarrow4M=1-\frac{1}{5^{2014}}< 1\)
\(\Rightarrow M< \frac{1}{4}< \frac{1}{3}\)
Chứng minh rằng: \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{2013}{2006^2.2007^2}<1\)
bài 1: tính A:=\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{2}{3}-\frac{1}{2}\)
Bài 2: Cho B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
Cho A =\(\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+...+2013}\)
Chứng minh A < \(\frac{3}{4}\)
Bài 1:
a, Cho S=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) .Chứng minh rằng \(\frac{2}{5}< S< \frac{8}{9}\)
b, Tìm x thuộc z để phân số \(\frac{x^2-5x-1}{x+2}\)có giá trị là số nguyên
c, Chứng minh rằng \(\left(\frac{7}{65}+1\right)\left(\frac{7}{84}+1\right)\left(\frac{7}{105}+1\right)\left(\frac{7}{124}+1\right)...\left(\frac{7}{153+1}\right)\left(\frac{7}{560}+1\right)< 2\)
d, Chứng minh rằng \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\frac{5}{3^5}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
CMR:\(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2013^3}< \frac{1}{40}\)
chứng minh rằng
\(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2004^3}\)<\(\frac{1}{40}\)