Chứng minh rằng \(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+....+\frac{1}{2013^3}<\frac{1}{40}\)giúp với
giúp đi nếu ko giúp đc là mình ko còn đc ở trong đội tuyển toán
CMR:\(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2013^3}< \frac{1}{40}\)
chứng minh rằng:\(\frac{1}{5^3}+\frac{1}{6^3}+....+\frac{1}{2016^3}+\frac{1}{2017^3}< \frac{1}{40}\)
chứng minh rằng
\(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2004^3}\)<\(\frac{1}{40}\)
Chứng minh rằng: \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{2013}{2006^2.2007^2}<1\)
chứng minh rằng \(\frac{1}{65}\)<\(\frac{1}{5^3}+\frac{1}{6^3}+...+\frac{1}{2004^3}\)<\(\frac{1}{40}\)
Chứng mỉnh rằng:
\(\frac{1}{5^3}\)+ \(\frac{1}{6^3}\)+ \(\frac{1}{7^3}\)+ ... + \(\frac{1}{2013^3}\)<\(\frac{1}{40}\)
Cho \(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+5+...+2017}.\)
Chứng minh rằng: \(A< \frac{3}{4}\)
Chứng minh rằng : \(\frac{1}{4028}< \left(\frac{1}{2}.\frac{3}{4}.....\frac{2011}{2012}.\frac{2013}{2014}\right)^2< \frac{1}{2015}\)