tim gia tri nho nhat cua bieu thuc sau:
A=(x-1)2+2010
tim gia tri nho nhat cua bieu thuc tim gia tri nho nhat cua bieu thuc x^4-4x^3+12x^2-16x+16
Tim gia tri lon nhat va gia tri nho nhat cua bieu thuc sau: A=\(\frac{x+1}{x^2+x+1}\)
GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)
Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1
GTNN :
\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)
\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)
Tim gia tri cua x de bieu thuc A=|x-3|+(-100)co gia tri nho nhat ,tim gia tri nho nhat ay
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
Tim gia tri nho nhat cua bieu thuc: P=|x|+7
(x€Z)
Tim gia tri lon nhat cua bieu thuc :Q=9-|x|
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
1﴿ Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
k nha bị âm r
tim gia tri nho nhat cua bieu thuc sau:
A= |102-x| + |x-2|
\(Min\)\(A=100\)
khi và chỉ khi \(\orbr{\begin{cases}x=102\\x=2\end{cases}}\)
|102 - x| + |x - 2| \(\ge\)|102 - x + x - 2|
\(\Rightarrow\)A \(\ge\)| 100 | = 100
Dấu "=" xảy ra \(\Leftrightarrow\)102 - x = x - 2
\(\Leftrightarrow\)2x = 104
\(\Leftrightarrow\)x = 52
Vậy giá trị nhỏ nhất của A là 100 khi x = 52
tim gia tri nho nhat cua bieu thuc B=|x-2/3|-1
Ta có: \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
tim gia tri nho nhat cua bieu thuc A=(x-1)+(x-2017)
A=|x-1|+|x-2017|
=>A=|x-1|+|2017-x|
Áp dụng bất đẳng thức:|a|+|b| \(\ge\) |a+b|,dấu "=" xảy ra <=> ab \(\ge\) 0
Ta có: A=|x-1|+|2017-x| \(\ge\) |x-1+2017-x|=2016
=>AMin=2016
Dấu "=" xảy ra <=> (x-1)(2017-x) \(\ge\) 0
<=>1 \(\le\)x \(\le\) 2017
Vậy......................
cho x+y=5 tim gia tri nho nhat cua bieu thuc A=|x+1|+|y-2|
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|=\left|5-1\right|=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)\left(y-2\right)=\left|\left(x+1\right)\left(y-2\right)\right|\)
<=> (x+1)(y-2) lớn hơn hoặc bằng 0
<=> x+1 lớn hơn hoặc bằng 0 và y-2 lớn hơn hoặc bằng 0
x+1 bé hơn hoặc bằng 0 và y-2 bé hơn hoặc bằng 0
<=> x lớn hơn hoặc bằng -1 và y lớn hơn hoặc bằng 2
x bé hơn hoặc bằng -1 và y bé hơn hoặc bằng 2
<=> x lớn hơn hoặc bằng 2
x bé hơn hoặc bằng -1
Vậy Amin = 4 khi và chỉ khi x lớn hơn hoặc bằng 2 hoặc x bé hơn hoặc bằng -1
cho bieu thuc M=(x-1)^2+(y+3)^2+2002. tim gia tri nho nhat cua bieu thuc m