cho tam giac abc đều ab=3 .M là điểm bất kì thuộc tam giac ,vẽ MA' //AB (A' thuộc BC),MB' //BC (B' thuộc AC ) MC' // AC (C' thuộc AB) .Tính MA' +MB'+MC' =?
Cho M là điểm nằm trong tam giác ABC, từ M kẻ MA' vuông góc BC, kẻ MB' vuông góc AC, kẻ MC' vuông góc AB( A' thuộc BC, B' thuộc AC, C' thuộc AB). Chứng minh rằng MA'/ha + MB'/hb + MC'/hc = 1
(ha, hb, hc là đường cao của tam giác hạ lần lượt từ A,B,C xuống các cạnh của tam giác ABC)
Cho tam giác đêỳ ABC, M là 1 điểm bất kì nằm bên trong tam giác. Dựng P thuộc AB, Q thuộc AC sao cho MP//BC và MQ//AB
a) CM rằng APMQ là hình thang cân
b) CM rằng MB + MC > MA
cho △ ABC và M là 1 điểm bất kì thuộc miền trong của tam giác
a. cmr : MB+ MC< AB+AC
b. áp dụng câu a . cmr \(\dfrac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)
Cho tam giác ABC đều, M là một điểm thuộc miền của tam giác. Qua M kẻ đường thẳng song song với BC cắt AB ở D, đường thẳng song song với AC cắt BC ở E, đường thẳng song song với AB cắt AC ở F.
a) Có bao nhiêu hình thang cân tất cả? Vì sao?
b) Cho biết MA = a, MB = b, MC = c. Chứng minh 3 đoạn thẳng MA, MB, MC thỏa mãn bất đẳng thức tam giác và tính chu vi tam giác DEF theo a, b, c.
cho tam giác ABC, M thuộc tam giác ABC. Tia BM giao AC tại I.
a)CMR: AM<MI+IA.
b) MB+MA< AC+CB.
c) CMR: (AB+AC+BC):2<MA+MB+MC<AB+AC+BC
Bài 1: Cho tam giác ,điểm M thuộc cạnh AB
a. So sánh : MC vs AM +AC
b. CM: MB +MC <AB+ AC
Bài 2: Cho tam giác điểm bất kỳ nằm trong tam giác
a. So sánh : MB+MCvới BC
b. CM :2(MA +MB +MC)>(AB+BC+CA)
1,A,ta có : MC < AM + AC
Vì MC, AM, AC là 3 cạnh tam giác AMC.
b,
theo câu a, ta có:MC < AM + AC
cộng MB vào hai vế ta có:
MC + MB < AM + AC + MB
<=> MC + MB < AB + AC (vì AM + MB = AB)
Mk cũng không chắc là đúng đâu
Cho tam giác ABC và M là điểm tùy ý thuộc miền trong tam giác.
a) Chứng minh rằng MB + MC < AB + AC
b) Áp dụng kết quả câu a), chứng minh rằng \(\frac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)
a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC
=) MC va MB lần lượt chia góc C và B làm 2 nửa
=) ^B = ^B1+ ^B2 ^C= ^C1+^C2
theo quan hệ giứa góc và cạnh đối diên có
ab tương ứng vs góc C, ac tương ứng vs góc B
MB .........................C1, MC B2
CÓ : ^B+^C > ^B2+^C2
=) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)
CON B THÌ CHỊU NHÉ
a) Làm như bạn ly
b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC
MA + MC < AB + BC
Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)
Suy ra \(MA+MB+MC< AB+BC+CA\) (1)
Mặt khác,áp dụng BĐT tam giácL
MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)
Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)
Cho tam giác ABC. Điểm M thuộc cạnh BC sao cho MB : MC = 2 : 3. Kẻ MH // AC (H thuộc AB) và MK // AB (K thuộc AC).
a) Tính MB, MC biết BC = 25cm
b) Tính chu vi tam giác ABC biết chu vi KMC bằng 30cm
c) Chứng minh rằng HB.MC = BM.KM
Cho tam giác ABC. Điểm M thuộc cạnh BC sao cho MB : MC = 2 : 3. Kẻ MH // AC (H thuộc AB) và MK // AB (K thuộc AC).
a) Tính MB, MC biết BC = 25cm
b) Tính chu vi tam giác ABC biết chu vi KMC bằng 30cm
c) Chứng minh rằng HB.MC = BM.KM