Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
19.8A Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 21:26

\(A=16-2\cdot\left(-12\right)=40\)

ILoveMath
25 tháng 12 2021 lúc 21:27

\(a^2+b^2=\left(a^2+2ab+b^2\right)-2ab=\left(a+b\right)^2-2ab=\left(-4\right)^2-2\left(-12\right)=16+24=40\)

Tạ Thu Hương
Xem chi tiết
肖赵战颖
Xem chi tiết
Đặng Ngọc Quỳnh
18 tháng 2 2021 lúc 9:31

Có: \(1=\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1+1\right)=2\left(a^2+b^2\right)\)

Theo bđt Bunhiacopxki có: \(\left(\text{ax}+by\right)\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

Dấu '=' xảy ra khi ay=bx

\(\Rightarrow\left(a^2+b^2\right)\ge\frac{1}{2}\Rightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\)

Dấu '=' xảy ra khi a=b=1/2

Khi đó : \(P=1:\frac{1}{4}+40.\frac{1}{8}=9\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
18 tháng 2 2021 lúc 12:16

một cách khác :))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^4+b^4=\frac{a^4}{1}+\frac{b^4}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)

Tiếp tục áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)(2)

Từ (1) và (2) => \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)(3)

Theo bất đẳng thức AM-GM ta có \(ab\le\left(\frac{a+b}{2}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)=> \(\frac{1}{ab}\ge4\)(4)

Từ (3) và (4) => \(P=\frac{1}{ab}\cdot40\left(a^4+b^4\right)\ge4\cdot40\cdot\frac{1}{8}=20\)

Đẳng thức xảy ra <=> a = b = 1/2

Vậy MinP = 20

Khách vãng lai đã xóa
肖赵战颖
18 tháng 2 2021 lúc 14:40

Cách khác mà kết quả khác vậy, vậy cái nào mới đúng?

Khách vãng lai đã xóa
Thnguyen XuanNghi
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 7:42

a: \(A=\dfrac{2}{15}+\dfrac{13}{15}-\dfrac{1}{4}-\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{1}{2}\)

b: =5,4(-3,6-6,4)

=5,4*(-10)

=-54

Nguyễn Quỳnh Chi
Xem chi tiết
Lê Anh Huy
4 tháng 5 2020 lúc 20:37

X bằng 1 hoặc 0 cũng được

Khách vãng lai đã xóa
Hạt Bụi Thiên Thần
4 tháng 5 2020 lúc 21:18

c) Ta có: M < 4  => 13,8 : ( 5,6 - x ) < 4

                          => 5,6 - x < 13,8:4

                               5,6 - x < 3,45

                                       x < 5,6 - 3,45

                                       x < 2,15

Vậy x < 2,15

Khách vãng lai đã xóa
Trang Khúc
Xem chi tiết
HT.Phong (9A5)
8 tháng 8 2023 lúc 11:01

Trang Khúc
Xem chi tiết
HT.Phong (9A5)
8 tháng 8 2023 lúc 10:55

Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)

a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)

\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)

\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{a-4}\)

b) Thay x=9 vào P ta có:

\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)

c) \(P< 0\) khi:

\(\dfrac{4\sqrt{x}+4}{a-4}< 0\) 

Mà: \(4\sqrt{x}+4>0\)

\(\Rightarrow a-4< 0\)

\(\Rightarrow a< 4\) 

kết hợp với Đk ta có:

\(0\le x< 4\)

Tạ Thu Hương
Xem chi tiết
Tạ Thu Hương
Xem chi tiết