1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
a) Tìm các hệ số a và b của đa thức f(x)=ax+b, biết f(1)=1, f(2)=4
b) Tìm nghiệm của đa thức f(x) ở câu a.
a) Ta có \(f\left(x\right)=ax+b\)
+) \(f\left(1\right)=1\)
=> \(f\left(1\right)=a\cdot1+b=1\)
=> \(f\left(1\right)=a+b=1\)(1)
+) \(f\left(2\right)=4\)
=> \(f\left(2\right)=a\cdot2+b=4\)
=> \(f\left(2\right)=2a+b=4\)(2)
Từ (1) và (2) => \(\orbr{\begin{cases}a+b=1\\2a+b=4\end{cases}}\)
=> \(a-2a=1-4\)
=> \(-a=-3\)
=> \(a=3\)
Thay a = 3 vào ta có : \(\orbr{\begin{cases}3+b=1\\2\cdot3+b=4\end{cases}}\)
=> \(\orbr{\begin{cases}3+b=1\\6+b=4\end{cases}}\)
=> b = -2
Vậy a = 3 và b = -2
b) Thay a = 3 và b = -2 vào đa thức \(f\left(x\right)=ax+b\)ta có :
\(f\left(x\right)=3\cdot x+\left(-2\right)=0\)
=> \(3x+\left(-2\right)=0\)
=> \(3x=0-\left(-2\right)\)
=> \(3x=0+2\)
=> \(3x=2\)
=> \(x=\frac{2}{3}\)
Vậy nghiệm của đa thức \(f\left(x\right)=\frac{2}{3}\).
Tìm các hệ số a , b của đa thức f ( x ) = ax + b biết f ( 1 ) = 1 ; f ( 0 ) = - 2 .
f(0)=-2 => a*0+b=-2 => b=-2
f(1)=1 => a*1-2=1 => a=3
tìm các hệ số a và b của đa thức (x)=ax+b biết rằng f(1)=1 , f(2)=4
ta có
\(\hept{\begin{cases}f\left(1\right)=1\\f\left(2\right)=4\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}}}\)
lấy hiệu hai phương trình ta có :
\(\left(2a+b\right)-\left(a+b\right)=4-1\Leftrightarrow a=3\Rightarrow b=-2\)
a) Tìm số a để đa thức ax - 1/2 có nghiệm là x = 1/3
b) Xác định hệ số a,b của đa thức f (x) = ax + b biết f (1) = (-3) và f (2) = 7
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
Tìm hệ số a và b của đa thức f(x)= ax+b biết rằng f(1)=1,f(2)=4
ta có: f(1)=a.1+b=a+b
do f(1)=1 nên a+b=1 (1)
lại có: f(2)=a.2+b=2a+b
do f(2)=4 nên 2a+b=4 (2)
từ (1) (2) => a=3; b=-2
Tìm các hệ số a,b,c của đa thức f(x)=ax2+bx+c
Biết f(0)=4 ; f(1)=3 và f(-1)=7
Ta có: f(0) = \(a.0^2+b.0+c=4\)
\(\Rightarrow0+0+c=4\Rightarrow c=4\)
\(f\left(1\right)=a.1^2+b.1+c=3\)
\(\Rightarrow a+b+c=3\Rightarrow a+b=-1\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=7\)
\(\Rightarrow a-b+4=7\Rightarrow a-b=3\)
Ta có: \(\left(a+b\right)+\left(a-b\right)=a+a+b-b=2a=-1+3=2\)
\(\Rightarrow a=2:2=1\)
\(\Rightarrow b=-1-1=-2\)
Vậy a=1;b=-2;c=4
Ta có:\(\hept{\begin{cases}f\left(0\right)=4\\f\left(1\right)=3\\f\left(-1\right)=7\end{cases}}\) \(\hept{\begin{cases}c=4\\a+b=3\\a-b=7\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c=4\\a=5\\b=-2\end{cases}}\)
Mấy ban kia làm dung roi do
k tui nha
thanks
Tính các hệ số a và b của đa thức f(x) =ax + b biết rằng f(1) = 1 , f(2) = 4.
Giải
Vì f(1) = 1 nên ta có a*1 +b =1 <=> a+b =1 (1)
Tương tự ta có f(2)=4 <=> 2a+ b = 4 (2)
Từ (1) và (2) ta giải được a = 3, b= -2
Cho đa thức f(x)=ax^4+bx^3+cx^2+dx+4a.a) Tìm quan hệ giữa các hệ số a và c;b và d của đa thức f(x) để f(x) có hai nghiệm là x=2 và x=-2. Thử lại với a=3;b=4;b) Với a=1;b=1.Hãy cho biết x=1 và x=-1 có phải là nghiệm đa thức vừa tìm?
Tìm các hệ số a,b,c của đa thức f(x)=ax^2 + bx+c.biết f(0)=4,f(1)=3 và f(-1)=7
Ta có \(f\left(x\right)=ãx^2+bx+c\)
-Thay x=0 vào đa thức \(f\left(x\right)\) ta được:
\(f\left(0\right)=a.0^2+b.0+c=c=4\)
\(\Rightarrow c=4\)
-Thay x=1 vào đa thức \(f\left(x\right)\)ta được:
\(f\left(1\right)=a.1^2+b.1+c=a+b+c=3\)
mà \(c=0\Rightarrow a+b=0\)\(\left(1\right)\)
-Thay x=-1 vào đa thức \(f\left(x\right)\)ta được:
mk làm tiếp :Thay x=-1 vào đa thức \(f\left(x\right)\)ta được:
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\)
\(=a-b+3=7\)
\(\Rightarrow a-b=4\)\(\left(2\right)\)
-Từ \(\left(1\right)\)và\(\left(2\right)\)suy ra:
\(\left(a+b\right)+\left(a-b\right)=0+4=4\)
\(\Rightarrow a+b+a-b=4\)
\(\Rightarrow2a=4\Rightarrow a=2\)
-Có :\(a-b=4\Rightarrow2-b=4\Rightarrow b=-2\)
Vậy \(a=2,b=-2,c=3\)