Tinh:
S=2015 + 2015/1+2 +2015/1+2+3 + 2015/1+2+3+4 +... + 2015/1+2+3+...+2016
Tinh:
S=2015 + 2015/1+2 +2015/1+2+3 + 2015/1+2+3+4 +... + 2015/1+2+3+...+2016
Tính: (1*2015+2*2014+3*2013+...+2015*1)/(1*2+2*3+3*4+4*5+...+2015*2016)
(2/3 + 3/4 + 4/5 +... + 2016/2017) x (1/2 + 2/3 + 3/4 + ...+ 2015/2016) - (1/2 + 2/3 + 3/4 +...+2015/2016) x (2/3 + 3/4 + 4/5 +...+2015/2016)
Tính tổng S= 2015 + 2015/1+2 + 2015/1+2+3 + ... + 2015/1+2+3+...+2016
viết lại đề cho rõ phân số đi bn
Tính tổng S=2015+2015/1+2+2015/1+2+3+..........+2015/1+2+3+........+2016
RGBT:
E=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
Chứng minh rằng:
1+2015+20152+20153+...+20157= 2016.(1+20152)(1+20154)
\(vt=1+2015+2015^2+2015^3+2015^4+2015^5+2015^6+2015^7\)
\(=\left(1+2015\right)+\left(2015^2+2015^3\right)+\left(2015^4+2015^5\right)+\left(2015^6+2015^7\right)\)
\(=1\left(1+2015\right)+2015^2\left(1+2015\right)+2015^4\left(1+2015\right)+2015^6\left(1+2015\right)\)
\(=\left(2015+1\right)\left(1+2015^2+2015^4+2015^6\right)\)
\(=2016\left(1+2015^2+2015^4+2015^6\right)\)
\(=2016\left[\left(1+2015^2\right)+\left(2015^4+2015^6\right)\right]\)
\(=2016\left[1\left(1+2015^2\right)+2015^{2014}\left(1+2015^2\right)\right]=vp\left(đpcm\right)\)
\(=2016\left(1+2015^{2014}\right)\left(1+2015^{2012}\right)\)
Tính S = 1/2(1+2) + 1/3(1+2+3)+...+ 1/2015(1+2+...+2014+2015) + 1/2016(1+2+...+2015+2016)
1 Tính nhanh
2015 - ( 403.5 - 2016) - 2016 + 2^2017 : 2^2015 - 2^2015:4^1007-1-3+4-5-6+11
=2015-(2015-2016)-2016+22017-2015-22015/22014-(1-4)-3-(5+6)+11
=(2015-2015)+(2016-2016)+22-2+3-3-11+11
=0+0+(4-2)+(3-3)-(11-11)
=2