cho a,b,c,d là các số nguyên dương. chứng tỏ a/a+b+c+b/b+c+a+c/c+d+a+d/d+a+b là phân số tối giản
cho a, b, c,d là các số nguyên dương. chứng tỏ. \(\frac{a}{a+b+c}\)+\(\frac{b}{b+c+a}\)+\(\frac{c}{c+d+a}\)+\(\frac{d}{d+a+b}\) là phân số tối giản
chững minh đc dãy này lớn hơn 1 và nhỏ hơn 2 thì suy ra dãy này la phân số tối giản
Cho A=a+b/a+b+c + b+c/b+c+d + c+d/c+d+a + d+a/d+a+b ( với a;b;c;d là các số nguyên dương ) . Chứng tỏ biểu thức A không là số nguyên
ta có bất đẳng thức sau :
\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
tương tự ta sẽ có
\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên
xét hai phân số tối giản a/b và c/d ( a,b,c,d là các số nguyên dương ) .chứng minh
rằng nếu tổng của hai phân số này là một số nguyên thì các mẫu của chúng bằng nhau
không ai trả lời
cho a,b,c,d là các số nguyên dương. Chứng tỏ S không phải là số tự nhiên: S=(a/a+b+c )+(b/b+c+d) +(c/c+d+a)+(d/d+a+b)
Cho a,b,c,d là các số nguyên dương. Chứng tỏ rằng a/a+b+c + b/b+c+a + c/c+d+a + d/d+a+c >1
Ta có \(\frac{a}{a+b+c}\)> \(\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+a}\)> \(\frac{b}{b+c+a+d}\)
tương tự ....
suy ra cái đề > 1 dpcm
ko biet thi dung lam nhe con
Ồ,ra là vậy
Cho ∫ 1 2 1 x x 3 + 1 d x = 1 a ln b c + d với a, b, c, d là các số nguyên dương và b c tối giản. Giá trị của a+b+c+d bằng
A. 12
B. 10
C. 18
D. 15
Cho a,b,c,d là 4 số nguyên dương bất kì
Chứng tỏ : \(\dfrac{a}{a+b+c}\)+\(\dfrac{b}{a+b+d}\)+\(\dfrac{c}{b+c+d}\)+\(\dfrac{d}{a+c+d}\)không phải là số nguyên
cho a,b,c,d là các số nguyên dương, chứng tỏ rằng:
1< a/a+b+c +b/b+c+d +c/c+d+a +d/d+a+b <2