chứng tỏ rằng :
\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+....+\frac{1}{400}>\frac{1}{2}\)
Chứng tỏ rằng:
\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{2}\)
Vì \(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
\(\frac{1}{203}>\frac{1}{400}\)
.................
\(\frac{1}{399}>\frac{1}{400}\)
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)
⇒ A > \(\frac{1}{2}\)
Vậy A > \(\frac{1}{2}\) (ĐPCM)
chứng tỏ rằng :
a) 1/201 + 1/202 + 1/203+....+ 1/400 > 1/2
b) 1/201 + 1/202 + 1/203+....+ 1/400 < 1
Cho A=\(\frac{1}{201}\)+\(\frac{1}{202}\)+\(\frac{1}{203}\)+...+\(\frac{1}{300}\).Chứng minh rằng A<\(\frac{9}{20}\)? Làm ơn giúp mik nha!
Ta có: A=1/201+1/202+1/203+...+1/300
=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)
Ta có
1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4 (1)
1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5 (2)
từ (1) và (2)=> A<1/4+1/5=>A<9/20
Vậy A<9/20
~~~CHÚC BẠN HỌC GIỎI~~~
=>A=
Ta có: A=1/201+1/202+1/203+...+1/300
=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)
Ta có
1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4 (1)
1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5 (2)
từ (1) và (2)=> A<1/4+1/5=>A<9/20
Vậy A<9/20
Tìm x, biết: \(\frac{2-x}{201}+\frac{x}{203}=\frac{1-x}{202}+1\)
<=> (2-x/201 + 1) + (x/203 - 1) = (1-x/202 + 1) + (1-1)
<=> 203-x/201 + x-203/203 = 203-x/202
<=> 203-x/201 - 203-x/203 - 203-x/202 = 0
<=> (203-x).(1/201-1/203-1/202) = 0
<=> 203-x = 0 ( vì 1/201-1/203-1/202 khác 0 )
<=> x=203
Vậy x=203
k mk nha
\(CMR:\frac{1}{201}+\frac{1}{202}+....+\frac{1}{399}+\frac{1}{400}>\frac{1}{2}\)
Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Ta thấy :
\(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
...
\(\frac{1}{399}>\frac{1}{400}\)
\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)
có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)
Vậy : \(S>\frac{1}{2}\)
Mấy bạn giúp mình với
Bài 1:Chứng minh rằng:
a)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
b)\(\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+...+\frac{1}{400}=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}\)
Chứng tỏ :
S = \(\frac{1}{201}\)+ \(\frac{1}{202}\)+.........+\(\frac{1}{399}\)+\(\frac{1}{400}\)>\(\frac{1}{2}\)
A = \(\frac{10}{27}\)+ \(\frac{9}{16}\)+ \(\frac{11}{34}\)< 2
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b) \(\frac{x+4}{200}+\frac{x+3}{201}=\frac{x+2}{202}+\frac{x+1}{203}\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{15}\)
\(\frac{181\left(x+1\right)}{660}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\frac{181\left(x+1\right)}{660}=\frac{17\left(x+1\right)}{52}\)
\(2353\left(x+1\right)=2805\left(x+1\right)\)
\(2353x+2353=2805x+2805\)
\(2353=2805x+2805-2353x\)
\(2353=452x+2805\)
\(2353-2805=452x\)
\(-452=452x\)
\(x=-1\)
Tìm x biết: \(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}\)
Ủa ko có vế phải thì mình làm bằng niềm tin à? :D