cho :f(x)=x^17-2013x^16+2013x^15-....-2003x^2-1
tính ;f(2012)
Bài 2: Tính
cho f(x) = x^2016 - 2013x^2015+ 2013x^2014 -2013x^2013 + ........+ 2013x^2 -2013x +2013
với f (2012)
Tính
cho f(x) = x^2016 - 2013x^2015+ 2013x^2014 -2013x^2013 + ........+ 2013x^2 -2013x +2013
với f (2012)
Đặt \(g\left(x\right)=x^{2015}-x^{2014}+x^{2013}-...+x-1\)
Dễ thấy: \(f\left(x\right)=x^{2016}-2013\times g\left(x\right)\Rightarrow f\left(2012\right)=2012^{2016}-2013\times g\left(2012\right)\)(a)
Ta có: \(\left(x+1\right)\times g\left(x\right)=\left(x+1\right)\left(x^{2015}-x^{2014}+x^{2013}-...+x-1\right)\)
\(\Rightarrow\left(x+1\right)\times g\left(x\right)=x^{2016}-1\)
\(\Rightarrow\left(2012+1\right)\times g\left(2012\right)=2012^{2016}-1\)hay: \(2013\times g\left(2012\right)=2012^{2016}-1\)
Thay vào (a) ta có: \(f\left(2012\right)=2012^{2016}-\left(2012^{2016}-1\right)=1\).
Tính giá trị của đa thức:
F(x) = x^2013 - 2013x^2012 + 2013x^2011 - 2013x^2010 + ... + 2013x- 1 tại x = 2012
f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1
= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1
= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1
= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1
= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1
= x - 1 = 2012 - 1 = 2011
Cho \(f\left(x\right)=x^{2013}-2013x^{2012}+2013x^{2011}-...+2013x-1\). Tính \(f\left(2012\right)\)
Cho \(f\left(x\right)=x^{2013}-2013x^{2012}+2013x^{2011}-...+2013x-1.\)Tính \(f\left(2012\right)\)
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}-...-x^3-x^2+x^2+x-1\)
=x-1
=2012-1=2011
Cho f(x)=x\(^{2013}\) + 2013x\(^{2012}\) + 2013x\(^{2011}\) - ..... +2013x -1. Tính f(2012)
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...+x^2+x+1\)
=x+1=2013
Cho f(x)=x\(^{2013}\) + 2013x\(^{2012}\) + 2013x\(^{2011}\) - ..... +2013x -1. Tính f(2012)
a) Tính giá trị của biểu thức A=7x+400y / 2014(x-3)2014+1
Biết xvaf y là các số nguyên tố thỏa mãn 17x+18y=124
b) Cho đa thức f(x)=x2014 - 2013x2013+ 2013x2012-...- 2013x3+x2 - x+1
tính giá trị biểu thức
x^10 - 2013x^9 + 2013x^8 - 2013x^7 + ... - 2013x + 1 tại x = 7