chứng minh rằng :1-1/2+1/3-1/4+...+1/199-1/200 = 1/101+1/102+1/103+1/104+...+1/200.
Chứng minh rằng:
1 - 1/2 + 1/3 -1/4 + ... + 1/199 - 200= 1/101 + +1/102 + 1/103 + ... + 1/200
Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho
sory nhin nham mik rõ đầu bài rồi để mik giải cho
chứng minh rằng: 1-1/2+1/3-1/4+.......+1/199-1/200=1/101+1/102+1/103+.......+1/200
Lời giải:
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}$
$=(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+>..+\frac{1}{199}+\frac{1}{200})-2(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200})-(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100})$
$=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}$
hãy chứng tỏ rằng:1-1/2+1/3-1/4+......+1/199-1/200=1/101+1/102+1/103+.....+1/200
chứng minh.1-1/2+1/3-1/4+1/5-1/6+...1/199-1/200=1/101+1/102+1/103+...+1/200
Xét vế trái: 1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200
=(1+1/3+1/5+..+1/199)-(1/2+1/4+..+1/200)
=(1+1/2+1/3+1/4+1/5+...+1/199+1/200)-2.(1/2+1/4+..+1/200)
=1+1/2+1/3+1/4+1/5+..+1/199+1/200-1-1/2-...-1/100
=1/101+1/102+1/103+...1/200
Vậy vế trái bằng vế phải
chứng tỏ 1/101+1/102+1/103+.........+1/200=1-1/2+1/3-1/4+.........+1/199-1/200
Chứng minh rằng:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Help me!!!!!!!
Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Chúc bạn học tốt!
Chứng minh rằng ; 1-1/2+1/3-1/4+...+1/199-1/200=1/101+1/102+000+1/200
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=VP\)=> ĐPCM
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(\text{đ}pcm\right)\)
mình ko hiểu cánh làm của các bạn
ghi thật chi tiết cho mình hiểu được ko
Chứng minh: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
Ta có : \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)\(\left(đpcm\right)\)
Chứng minh rằng :
1-1/2+1/3-1/4+.......+1/199-1/200 = 1/101+ 1/102+.......+1/200