cho A=1/10+1/11+1/12+...+1/99+1/100. chung minh A> 1 , giup mk voi nha
cac ban giup toi cau nay voi:
Thuc hien phep tinh(hop ly neu co the):
(10/99+11/199-12/299)x(1/2-1/3+-1/6)
mong cac ban giup minh nhanh voi a. Minh xin cam on
\(\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}+-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times0\)
\(=0\)
a: Chứng tỏ rằng tổng sau lớn hơn 1
A= 1/10+1/11+1/12+...+1/99+1/100
b: Cho tổng S= 1/21+1/22+...+1/35. Chứng minh rằng S>1/2
MK CẦN GẤP NHA! AI NHANH MK TICK CHO
a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
a)1/12+11/12+1/71-12/10
b)2/3-4.(1/2+3/4)
moi nguoi giup mk voi nha
Tinh tong :
A = 1/1*3 + 1/3*5 + 1/5*7 + ..... + 1/99*101
B = 1 + 1/3 + 1/6 + 1/10 + ..... + 1/630
Giup minh voi nha ! Ai dung minh *** cho !
Giai ro rang ho minh voi !
B = \(1+\frac{1}{3}+\frac{1}{6}+....+\frac{1}{630}=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{1260}\)
B = \(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{35.36}\right)\)
B = \(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{35}-\frac{1}{36}\right)\)
B = \(1+2\left(\frac{1}{2}-\frac{1}{36}\right)=1+2.\frac{17}{36}\)
B = \(1+\frac{17}{18}\)
B = \(\frac{35}{18}\)
\(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{99x101}\)
\(A\)\(x2=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{99x101}\)
\(A\)\(x2=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(A\)\(x2=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101}:2=\frac{100}{101}x\frac{1}{2}=\frac{50}{101}\)
Tính nhanh : a) -1-2-3-4-5-.....-199-200-201-202 b) 1+2-3-4+5+6-7-8+9+10-11-12+13+98-99-100+101+102
Giai chi tiet giup minh nha !!! Minh tich cho !!
A = - ( 1+2+3 +....+ 202) = - 203. 101 = -20503
B= ( 1+2-3-4) + ( 5+6-7-8) +..........+( 97+98 -99-100) + ( 101+102)
= -4 + (-4) .........+ (-4) + 203
= -4 .25 + 203 = 103
cho A =1/2*3/4*5/6*...*99/100
B=2/3*4/5*6/7*...*100/101
C=1/2*2/3*4/5*...*98/99
a) so sanh A, B, C
b) Chung minh: A*C< A^2< 1/10
c) Chung minh: 1/15< A< 1/10
Lam giup minh di ai lam duoc minh tich dung cho
cho A = 1/10 + 1/11 + 1/12+ ...+ 1/99 + 1/ 100
chứng Minh Rằng A > 1
Ta có :
A = \(\dfrac{1}{10}\) + \(\dfrac{1}{11}\) + \(\dfrac{1}{12}\) +.................+ \(\dfrac{1}{99}\) + \(\dfrac{1}{100}\) ( 91 số hạng)
A = \(\dfrac{1}{10}\) + \(\left(\dfrac{1}{11}+\dfrac{1}{12}+...........+\dfrac{1}{99}+\dfrac{1}{100}\right)\)
Vì \(\dfrac{1}{11}>\dfrac{1}{100}\)
\(\dfrac{1}{12}>\dfrac{1}{100}\)
.................................
\(\dfrac{1}{99}< \dfrac{1}{100}\)
\(=>\) \(A\) > \(\dfrac{1}{10}+\left(\dfrac{1}{100}+\dfrac{1}{100}+........+\dfrac{1}{100}\right)\) (90 số hạng \(\dfrac{1}{100}\) )
A > \(\dfrac{1}{10}+\dfrac{90}{100}\)
\(A\) > \(\dfrac{1}{10}+\dfrac{9}{10}\)
=> A > 1
=> đpcm
cho A = 1/10 + 1/11 + 1/12+ ...+ 1/99 + 1/ 100
chứng Minh Rằng A > 1
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(\frac{13}{12}\) \(>\) \(1\)
cho K = 1 + 11 + 112 + ...1199
a ) tinh tong K
b ) Chung to K chia het cho 3 va 4
giup minh voi voi tui minh can rui
ai nhanh minh se tick va ket ban
\(K=1+11+11^2+...+11^{99}\)
\(11K=11+11^2+11^3+...+11^{100}\)
\(11K-K=11+11^2+11^3+...+11^{100}-1-11-11^2-...-11^{99}\)
\(10K=11^{100}-1\)
\(K=\frac{11^{100}-1}{10}\)