Cho C = 5^1 + 5^2 +5^3 + 5^4 + ... +5^2021 . Chứng tỏ C chia hết cho 31
Cho C = 5^1 + 5^2 +5^3 + 5^4 + ... +5^2021 . Chứng tỏ C chia hết cho 31 CỨU TÔI VỚI
Chứng tỏ :
a) C = 1 + 5 + 5^2 + 5^3 + ... + 5^403 + 5^404 chia hết cho 31.
b) E = 3 + 3^2 + 3^3 + ... + 3^60 vừa chia hết cho 4 , vừa chia hết cho 13.
chứng tỏ rằng:
a)1^3+3^3+5^3+7^3 chia hết cho 2^3
b)3+3^3+3^5+3^7+........+3^2n+1 chia hết cho 30
c)1+5+5^2+5^3+.......+5^404 chia hết cho 31
Cho S = 5 + 5^2 + 5^3 + 5^4 + .... + 5^99
a) Chứng tỏ rằng S chia hết cho 31
b) Chứng tỏ rằng S không chia hết cho 30
c) Tìm x biết 25^x - 5 = 4 x S
Làm ơn giúp em các anh chị ơi
a) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{97}.31\)
\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
b) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)
\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)
\(=5+5.30+5^3.30+...+5^{97}.30\)
\(=5+30.\left(5+5^3+...+5^{97}\right)\)
Mà \(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)
c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)
\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)
\(4S=5^{100}-5\)
\(\Rightarrow25^x-5=5^{100}-5\)
\(\Rightarrow25^x=5^{100}\)
\(\Rightarrow25^x=25^{50}\)
\(\Rightarrow x=50\)
a) Chứng minh: A=5+52+53 chia hết cho 31
b) Chứng minh: B=5+52+53+54+...+599 chia hết cho 31
c) tìm số dư của C=1+5+52+...+599+5100 chia hết cho 31
Cho S=5+5^2+5^3+5^4+...+5^2013. Chứng tỏ rằng S chia hết cho 31
1/5 S = 1+5+5^2+...+5^2012
=1(1+5+5^2)+5^3(1+5+5^2)+...+5^2010(1+5+5^2)
mà 1+5+5^2=31=>1+5+5^2 chia hết 31
=> mổi số hạng của 1/5 S chia hết 31
=> S chia hết 31
Học chuyên đó ak. bài zễ thế nài mà ko bt làm ntn hả
ta có : S=5+5^2+5^3+5^4+......+5^2013 ( có 2013 số hạng )
S=(5+5^2+5^3)+(5^4+5^5+5^6)+.............+(5^2011+5^2012+5^2013) ( có 671 nhóm)
S= 5.(1+5+5^2)+5^2.(1+5+5^2)+........+5^2011.(1+5+5^2)
S=(5+5^2+.....+5^2011).31
S chia hết cho 31
1.Chứng tỏ rằng:
a) 1+5+52+53+.......+5101:6
b)2+22+23+......+2106 vừa chia hết cho 31,vừa chia hết cho 5
2.Chứng tỏ rằng:
a)Nếu abc-deg chia hết cho 11 thì abc deg chia hết cho 11
b)Nếu abc chia hết cho 8 thì 4a +2b+c chia hết cho 8
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
Hãy chứng tỏ 2021^3 + 2021^4+ 2021^5+ 2021^6+ 2021^7 chia hết cho 2022